(Peer-Reviewed) Giant and light modifiable third-order optical nonlinearity in a free-standing h-BN film
Jun Ren 任军 ¹ ², Han Lin 林瀚 ¹ ⁵, Xiaorui Zheng ¹, Weiwei Lei ³, Dan Liu ³, Tianling Ren 任天令 ², Pu Wang 王璞 ⁴, Baohua Jia 贾宝华 ¹ ⁵
¹ Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P. O. Box 218, Hawthorn, Victoria 3122, Australia
² School of Integrated circuits, Tsinghua University, Haidian, Beijing 100084, China
中国 北京 海淀 清华大学集成电路学院
³ Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
⁴ Institute of Laser Engineering, Beijing University of Technology, Chaoyang, Beijing 100124, China
中国 北京 朝阳 北京工业大学激光工程研究院
⁵ The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
Opto-Electronic Science, 2022-06-21
Abstract
Recently, hexagonal boron nitride (h-BN) has become a promising nanophotonic platform for on-chip information devices due to the practicability in generating optically stable, ultra-bright quantum emitters. For an integrated information-processing chip, high optical nonlinearity is indispensable for various fundamental functionalities, such as all-optical modulation, high order harmonic generation, optical switching and so on.
Here we study the third-order optical nonlinearity of free-standing h-BN thin films, which is an ideal platform for on-chip integration and device formation without the need of transfer. The films were synthesized by a solution-based method with abundant functional groups enabling high third-order optical nonlinearity. Unlike the highly inert pristine h-BN films synthesized by conventional methods, the free-standing h-BN films could be locally oxidized upon tailored femtosecond laser irradiation, which further enhances the third-order nonlinearity, especially the nonlinear refraction index, by more than 20 times.
The combination of the free-standing h-BN films with laser activation and patterning capability establishes a new promising platform for high performance on-chip photonic devices with modifiable optical performance.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28