Year
Month
(Peer-Reviewed) Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms
Xiaochong Dong 董骁翀 ¹, Yingyun Sun 孙英云 ¹, Ye Li 李烨 ², Xinying Wang 王新迎 ², Tianjiao Pu 蒲天骄 ²
¹ School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
中国 北京 华北电力大学电气与电子工程学院
² China Electric Power Research Institute, Beijing 100192, China
中国 北京 中国电力科学研究院
Abstract

The rapidly increasing wind power penetration presents new challenges to the operation of power systems. Improving the accuracy of wind power forecasting is a possible solution under this circumstance. In the power forecasting of multiple wind farms, determining the spatio-temporal correlation of multiple wind farms is critical in improving the forecasting accuracy.

This paper proposes a spatio-temporal convolutional network (STCN) that utilizes a directed graph convolutional structure. A temporal convolutional network is also adopted to characterize the temporal features of wind power. Historical data from 15 wind farms in Australia are used in the case study.

The forecasting results show that the proposed model has higher accuracy than existing methods. Based on the structure of the STCN, asymmetric spatial correlation at different temporal scales can be observed, which shows the effectiveness of the proposed model.
Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms_1
Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms_2
Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms_3
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • Time-dependent borehole stability in hard-brittle shale                                Targeted design of advanced electrocatalysts by machine learning
    About
    |
    Contact
    |
    Copyright © PubCard