(Peer-Reviewed) Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
Perry Ping Shum 沈平 ¹, Gerd Keiser ², Georges Humbert ³, Dora Juan Juan Hu 胡娟娟 ⁴, A. Ping Zhang 张阿平 ⁵, Lei Su 苏磊 ⁶
¹ Department of Electrical and Electronicengineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
中国 深圳 南方科技大学电子与电气工程系
² Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston 02215, America
³ XLIM Research Institute - UMR 7252 CNRS, University of Limoges, 123, avenue Albert Thomas, Limoges 87060, France
⁴ Institute for Infocomm Research, Agency for Science, Technology and Research, 1 Fusionopolis Way, #21-01, Connexis South Tower Singapore 138632, Singapore
⁵ The Hong Kong Polytechnic University, Kowloon Tong, Hong Kong 999077, China
中国 香港 香港理工大学
⁶ School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
Opto-Electronic Advances, 2023-06-25
Abstract
An ultrasound wave is a kind of acoustic signal with a frequency greater than 20 kHz, which is widely used in diverse fields such as medical imaging diagnosis, nondestructive testing and resource exploration. A variety of ultrasound sensors have been developed for ultrasound detection. Particularly for photoacoustic imaging, specialized ultrasound sensors with high sensitivity, small size, and broad bandwidth are needed. However, achieving such sensor performance still poses a great challenge to the current state-of-the-art in ultrasound sensor technology.
A recent work published inOpto-Electronic Advances(DOI: 10.29026/oea.2022.200076) proposes a microfiber-based ultrasound sensor that breaks the limitations of existing ultrasound sensors. Benefiting from the large evanescent field characteristic of microfiber, combined with the coherent detection technology, the proposed sensor realized highly sensitive ultrasound detection and demonstrated excellent performance in high-resolution photoacoustic imaging. The highly sensitive and miniaturized microfiber ultrasound sensor provides a competitive alternative for various applications, such as endoscopic photoacoustic imaging of the intestinal tract and blood vessels in animals.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25