Year
Month
(Peer-Reviewed) Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization
Chaudry Sajed Saraj ¹ ², Subhash C. Singh ¹ ³, Gopal Verma ¹, Rahul A Rajan ¹ ², Wei Li 李炜 ¹ ², Chunlei Guo 郭春雷 ³
¹ GPL Photonics Lab, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
中国 长春 中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室 微纳光子学与材料国际实验室
² University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
中国 北京 中国科学院大学
³ The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
Opto-Electronic Advances, 2022-06-02
Abstract

Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels. These reactions, however, suffer from sluggish kinetics due to a low local concentration of radicals around the electrocatalyst. A large applied electrode potential can enhance the fuel generation efficiency via enhancing the radical concentration around the electrocatalyst sites, but this comes at the cost of electricity.

Here, we report about a ~45% saving in energy to achieve an electrochemical hydrogen generation rate of 3×1016 molecules cm–2s–1 (current density: 10 mA/cm2) through localized electric field-induced enhancement in the reagent concentration (LEFIRC) at laser-induced periodic surface structured (LIPSS) electrodes. The finite element model is used to simulate the spatial distribution of the electric field to understand the effects of LIPSS geometric parameters in field localization. When the LIPSS patterned electrodes are used as substrates to support Pt/C and RuO2 electrocatalysts, the η10 overpotentials for HER and OER are decreased by 40.4 and 25%, respectively.

Moreover, the capability of the LIPSS-patterned electrodes to operate at significantly reduced energy is also demonstrated in a range of electrolytes, including alkaline, acidic, neutral, and seawater. Importantly, when two LIPSS patterned electrodes were assembled as the anode and cathode into a cell, it requires 330 mVs of lower electric potential with enhanced stability over a similar cell made of pristine electrodes to drive a current density of 10 mA/cm2.

This work demonstrates a physical and versatile approach of electrode surface patterning to boost electrocatalytic fuel generation performance and can be applied to any metal and semiconductor catalysts for a range of electrochemical reactions.
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_1
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_2
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_3
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution                                High performance integrated photonic circuit based on inverse design method
    About
    |
    Contact
    |
    Copyright © PubCard