(Peer-Reviewed) Two-body exceptional points in open dissipative systems
Peize Ding 丁霈泽 ¹, Wei Yi 易为 ¹ ²
¹ CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学 中国科学院量子信息重点实验室
² CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
中国 合肥 中国科学院 量子信息与量子科技前沿卓越创新中心
Abstract
We study two-body non-Hermitian physics in the context of an open dissipative system depicted by the Lindblad master equation. Adopting a minimal lattice model of a handful of interacting fermions with single-particle dissipation, we show that the non-Hermitian effective Hamiltonian of the master equation gives rise to two-body scattering states with state- and interaction-dependent parity-time transition.
The resulting two-body exceptional points can be extracted from the trace-preserving density-matrix dynamics of the same dissipative system with three atoms. Our results not only demonstrate the interplay of parity-time symmetry and interaction on the exact few-body level, but also serve as a minimal illustration on how key features of non-Hermitian few-body physics can be probed in an open dissipative many-body system.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31