(Peer-Reviewed) Two-body exceptional points in open dissipative systems
Peize Ding 丁霈泽 ¹, Wei Yi 易为 ¹ ²
¹ CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学 中国科学院量子信息重点实验室
² CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
中国 合肥 中国科学院 量子信息与量子科技前沿卓越创新中心
Abstract
We study two-body non-Hermitian physics in the context of an open dissipative system depicted by the Lindblad master equation. Adopting a minimal lattice model of a handful of interacting fermions with single-particle dissipation, we show that the non-Hermitian effective Hamiltonian of the master equation gives rise to two-body scattering states with state- and interaction-dependent parity-time transition.
The resulting two-body exceptional points can be extracted from the trace-preserving density-matrix dynamics of the same dissipative system with three atoms. Our results not only demonstrate the interplay of parity-time symmetry and interaction on the exact few-body level, but also serve as a minimal illustration on how key features of non-Hermitian few-body physics can be probed in an open dissipative many-body system.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28