(Peer-Reviewed) Broadband and continuous wave pumped second-harmonic generation from microfiber coated with layered GaSe crystal
Zhen Hao 郝臻, Biqiang Jiang 姜碧强, Yuxin Ma 马育新, Ruixuan Yi 弋瑞轩, Xuetao Gan 甘雪涛, Jianlin Zhao 赵建林
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
中国 西安 西北工业大学物理科学与技术学院 陕西省信息光子技术重点实验室 光场调控与信息感知工业和信息化部重点实验室
Opto-Electronic Advances, 2023-09-27
Abstract
The conversion-efficiency for second-harmonic (SH) in optical fibers is significantly limited by extremely weak second-order nonlinearity of fused silica, and pulse pump lasers with high peak power are widely employed. Here, we propose a simple strategy to efficiently realize the broadband and continuous wave (CW) pumped SH, by transferring a crystalline GaSe coating onto a microfiber with phase-matching diameter.
In the experiment, high efficiency up to 0.08 %W-1mm-1 is reached for a C-band pump laser. The high enough efficiency not only guarantees SH at a single frequency pumped by a CW laser, but also multi-frequencies mixing supported by three CW light sources.
Moreover, broadband SH spectrum is also achieved under the pump of a superluminescent light-emitting diode source with a 79.3 nm bandwidth. The proposed scheme provides a beneficial method to the enhancement of various nonlinear parameter processes, development of quasi-monochromatic or broadband CW light sources at new wavelength regions.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31