Year
Month
(Peer-Reviewed) Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
Zuntian Chu 楚遵天 ¹ ², Xinqi Cai ¹ ², Ruichao Zhu 朱瑞超 ¹ ², Tonghao Liu 刘同豪 ³, Huiting Sun 孙辉廷 ¹ ², Tiefu Li 李铁夫 ¹ ², Yuxiang Jia 贾宇翔 ¹ ², Yajuan Han 韩亚娟 ¹ ², Shaobo Qu 屈绍波 ¹ ², Jiafu Wang 王甲富 ¹ ²
¹ Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi'an 710051, China
中国 西安 中国人民解放军空军工程大学 陕西省人工结构功能材料与器件重点实验室
² Suzhou Laboratory, Suzhou 215000, China
中国 苏州 苏州实验室
³ Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China
中国 西安 中国人民解放军火箭军工程大学 智剑实验室
Opto-Electronic Advances, 2024-07-26
Abstract

Reprogrammable metasurfaces, which establish a fascinating bridge between physical and information domains, can dynamically control electromagnetic (EM) waves in real time and thus have attracted great attentions from researchers around the world. To control EM waves with an arbitrary polarization state, it is desirable that a complete set of basis states be controlled independently since incident EM waves with an arbitrary polarization state can be decomposed as a linear sum of these basis states.

In this work, we present the concept of complete-basis-reprogrammable coding metasurface (CBR-CM) in reflective manners, which can achieve independently dynamic controls over the reflection phases while maintaining the same amplitude for left-handed circularly polarized (LCP) waves and right-handed circularly polarized (RCP) waves. Since LCP and RCP waves together constitute a complete basis set of planar EM waves, dynamically-controlled holograms can be generated under arbitrarily polarized wave incidence.

The dynamically reconfigurable meta-particle is implemented to demonstrate the CBR-CM’s robust capability of controlling the longitudinal and transverse positions of holograms under LCP and RCP waves independently. It’s expected that the proposed CBR-CM opens up ways of realizing more sophisticated and advanced devices with multiple independent information channels, which may provide technical assistance for digital EM environment reproduction.
Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states_1
Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states_2
Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states_3
Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses                                Data-driven polarimetric approaches fuel computational imaging expansion
    About
    |
    Contact
    |
    Copyright © PubCard