Year
Month
(Peer-Reviewed) A small microring array that performs large complex-valued matrix-vector multiplication
Junwei Cheng 成骏伟 ¹, Yuhe Zhao 赵雨赫 ¹, Wenkai Zhang ¹, Hailong Zhou 周海龙 ¹ ² ³, Dongmei Huang 黄冬梅 ³ ⁴, Qing Zhu ⁵, Yuhao Guo 郭宇昊 ⁵, Bo Xu ⁵, Jianji Dong 董建绩 ¹, Xinliang Zhang 张新亮 ¹
¹ Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家实验室
² Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
中国 香港 香港理工大学 电子及资讯工程学系 光子技术研究院
³ The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
中国 深圳 香港理工大学深圳研究院
⁴ Photonics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
中国 香港 香港理工大学 电机工程学系 光子技术研究院
⁵ Institute of Strategic Research, Huawei Technologies, Shenzhen 518129, China
中国 深圳 华为战略研究院
Abstract

As an important computing operation, photonic matrix–vector multiplication is widely used in photonic neutral networks and signal processing. However, conventional incoherent matrix–vector multiplication focuses on real-valued operations, which cannot work well in complex-valued neural networks and discrete Fourier transform.

In this paper, we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field, and from small-scale (i.e., 4 × 4) to large-scale matrix computation (i.e., 16 × 16). Combining matrix decomposition and matrix partition, our photonic complex matrix–vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation. We further demonstrate Walsh-Hardmard transform, discrete cosine transform, discrete Fourier transform, and image convolutional processing.

Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture. More importantly, our results reveal that an integrated photonic platform is of huge potential for large-scale, complex-valued, artificial intelligence computing and signal processing.
A small microring array that performs large complex-valued matrix-vector multiplication_1
A small microring array that performs large complex-valued matrix-vector multiplication_2
A small microring array that performs large complex-valued matrix-vector multiplication_3
A small microring array that performs large complex-valued matrix-vector multiplication_4
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23
  • An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
  • Ang Li, Yifan Wu, Chang Wang, Feixia Bao, Zongyin Yang, Shilong Pan
  • Opto-Electronic Advances
  • 2024-07-17
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05



  • Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography                                Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids
    About
    |
    Contact
    |
    Copyright © PubCard