Year
Month
(Peer-Reviewed) Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity
Rongrong Xing 邢荣荣, Zhanchen Guo 郭展辰, Haifeng Lu 卢海峰, Qi Zhang 张齐, Zhen Liu 刘震
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
中国 南京 南京大学化学化工学院 生命分析化学国家重点实验室
Science Bulletin, 2021-10-05
Abstract

Molecularly imprinted polymers (MIPs), as important mimics of antibodies, are chemically synthesized by polymerization in the presence of a target compound. MIPs have found wide applications in important fileds. However, the current molecular imprinting technology suffers from a dilemma; there is often a compromise between the best affinity and the best specificity for MIPs prepared under optimized conditions. Herein, we proposed a new strategy called molecular imprinting and cladding (MIC) to solve this issue.

The principle is straightforward; after molecular imprinting, a chemically inert cladding thinlayer is generated to precisely cover non-imprinted area. We further proposed a special MIC approach for controllably engineering protein binders. The prepared cladded MIPs (cMIPs) exhibited significantly improved affinity and specificity. The general applicability of the proposed strategy and method was verified by engineering of cMIPs for the recognition of a variety of different proteins. The feasibility of cMIPs for real applications was demonstrated by fluorescence imaging of cancer cells against normal cells and immunoassay of C-peptide in human urine.

This study opened up a new avenue for controllably engineering protein-specific antibody mimics with excellent recognition properties, holding great prospective in important applications such as disease diagnosis and nanomedicine.
Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity_1
Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity_2
Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity_3
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16



  • Resonance Algorithm: A New Look at the Shortest Path Problem                                Detecting subtle yet fast skeletal muscle contractions with ultrasoft and durable graphene-based cellular materials
    About
    |
    Contact
    |
    Copyright © PubCard