(Peer-Reviewed) Stimulated Raman scattering microscopy with phase-controlled light focusing and aberration correction for rapid and label-free, volumetric deep tissue imaging
Weiqi Wang, Zhiwei Huang 黄志伟
Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576
Opto-Electronic Advances, 2024-07-17
Abstract
We report a novel stimulated Raman scattering (SRS) microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid, deep tissue 3D chemical imaging with subcellular resolution. To accomplish phase-controlled SRS (PC-SRS), we utilize a single spatial light modulator to electronically tune the axial positioning of both the shortened-length Bessel pump and the focused Gaussian Stokes beams, enabling z-scanning-free optical sectioning in the sample.
By incorporating Zernike polynomials into the phase patterns, we simultaneously correct the system aberrations at two separate wavelengths (~240 nm difference), achieving a ~3-fold enhancement in signal-to-noise ratio over the uncorrected imaging system. PC-SRS provides >2-fold improvement in imaging depth in various samples (e.g., polystyrene bead phantoms, porcine brain tissue) as well as achieves SRS 3D imaging speed of ~13 Hz per volume for real-time monitoring of Brownian motion of polymer beads in water, superior to conventional point-scanning SRS 3D imaging.
We further utilize PC-SRS to observe the metabolic activities of the entire tumor liver in living zebrafish in cell-silent region, unraveling the upregulated metabolism in liver tumor compared to normal liver. This work shows that PC-SRS provides unprecedented insights into morpho-chemistry, metabolic and dynamic functioning of live cells and tissue in real-time at the subcellular level.
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
Opto-Electronic Advances
2025-11-25
A review on optical torques: from engineered light fields to objects
Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
Opto-Electronic Science
2025-11-25