(Peer-Reviewed) Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu 俞臻杰 ¹, Moxin Li 李墨馨 ¹, Zhenyu Xing 邢振宇 ¹, Hao Gao 高豪 ¹, Zeyang Liu 刘泽阳 ¹, Shiliang Pu 浦世亮 ², Hui Mao 毛慧 ², Hong Cai 蔡宏 ², Qiang Ma 马强 ², Wenqi Ren 任文奇 ², Jiang Zhu 朱江 ², Cheng Zhang 张诚 ¹
¹ School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家实验室
² Hikvision Research Institute, Hangzhou, 310051, China
中国 杭州 海康威视研究院
Opto-Electronic Science, 2024-09-20
Abstract
Metasurfaces, composed of planar arrays of intricately designed meta-atom structures, possess remarkable capabilities in controlling electromagnetic waves in various ways. A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation, amplitude modulation, and polarization conversion.
Conventional design processes often involve extensive parameter sweeping, a laborious and computationally intensive task heavily reliant on designer expertise and judgement. Here, we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics, which is compatible to both single- and multi-objective device design tasks.
We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80% in the visible spectrum. We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator. The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination, with associated generation efficiencies surpassing 88%.
Finally, we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength, with efficiencies over 50%. Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization, empowering designers to create diverse high-performance and multifunctional metasurface optics.
Light-induced enhancement of exciton transport in organic molecular crystal
Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
Opto-Electronic Advances
2025-03-28
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
Opto-Electronic Advances
2025-03-28