Year
Month
(Peer-Reviewed) Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study
Yi Han ¹, Su-cheng Mu ¹, Hai-dong Zhang ², Wei Wei ¹, Xing-yue Wu ¹, Chao-yuan Jin ¹, Guo-rong Gu 顾国嵘 ¹, Bao-jun Xie 谢宝君 ², Chao-yang Tong 童朝阳 ¹
¹ Department of Emergency Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
中国 上海 复旦大学附属中山医院急诊科
² Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
中国 武汉 武汉大学人民医院放射科
Background

Computed tomography (CT) is a noninvasive imaging approach to assist the early diagnosis of pneumonia. However, coronavirus disease 2019 (COVID-19) shares similar imaging features with other types of pneumonia, which makes differential diagnosis problematic. Artificial intelligence (AI) has been proven successful in the medical imaging field, which has helped disease identification. However, whether AI can be used to identify the severity of COVID-19 is still underdetermined.

Methods

Data were extracted from 140 patients with confirmed COVID-19. The severity of COVID-19 patients (severe vs. non-severe) was defined at admission, according to American Thoracic Society (ATS) guidelines for community-acquired pneumonia (CAP). The AI-CT rating system constructed by Hangzhou YITU Healthcare Technology Co., Ltd. was used as the analysis tool to analyze chest CT images.

Results

A total of 117 diagnosed cases were enrolled, with 40 severe cases and 77 non-severe cases. Severe patients had more dyspnea symptoms on admission (12 vs. 3), higher acute physiology and chronic health evaluation (APACHE) II (9 vs. 4) and sequential organ failure assessment (SOFA) (3 vs. 1) scores, as well as higher CT semiquantitative rating scores (4 vs. 1) and AI-CT rating scores than non-severe patients (P<0.001). The AI-CT score was more predictive of the severity of COVID-19 (AUC=0.929), and ground-glass opacity (GGO) was more predictive of further intubation and mechanical ventilation (AUC=0.836). Furthermore, the CT semiquantitative score was linearly associated with the AI-CT rating system (Adj R2=75.5%, P<0.001).

Conclusion

AI technology could be used to evaluate disease severity in COVID-19 patients. Although it could not be considered an independent factor, there was no doubt that GGOs displayed more predictive value for further mechanical ventilation.
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_1
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_2
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_3
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_4
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23
  • An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
  • Ang Li, Yifan Wu, Chang Wang, Feixia Bao, Zongyin Yang, Shilong Pan
  • Opto-Electronic Advances
  • 2024-07-17
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05



  • Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome                                Risk assessment of fault water inrush during deep mining
    About
    |
    Contact
    |
    Copyright © PubCard