Year
Month
(Peer-Reviewed) Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study
Yi Han ¹, Su-cheng Mu ¹, Hai-dong Zhang ², Wei Wei ¹, Xing-yue Wu ¹, Chao-yuan Jin ¹, Guo-rong Gu 顾国嵘 ¹, Bao-jun Xie 谢宝君 ², Chao-yang Tong 童朝阳 ¹
¹ Department of Emergency Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
中国 上海 复旦大学附属中山医院急诊科
² Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
中国 武汉 武汉大学人民医院放射科
Background

Computed tomography (CT) is a noninvasive imaging approach to assist the early diagnosis of pneumonia. However, coronavirus disease 2019 (COVID-19) shares similar imaging features with other types of pneumonia, which makes differential diagnosis problematic. Artificial intelligence (AI) has been proven successful in the medical imaging field, which has helped disease identification. However, whether AI can be used to identify the severity of COVID-19 is still underdetermined.

Methods

Data were extracted from 140 patients with confirmed COVID-19. The severity of COVID-19 patients (severe vs. non-severe) was defined at admission, according to American Thoracic Society (ATS) guidelines for community-acquired pneumonia (CAP). The AI-CT rating system constructed by Hangzhou YITU Healthcare Technology Co., Ltd. was used as the analysis tool to analyze chest CT images.

Results

A total of 117 diagnosed cases were enrolled, with 40 severe cases and 77 non-severe cases. Severe patients had more dyspnea symptoms on admission (12 vs. 3), higher acute physiology and chronic health evaluation (APACHE) II (9 vs. 4) and sequential organ failure assessment (SOFA) (3 vs. 1) scores, as well as higher CT semiquantitative rating scores (4 vs. 1) and AI-CT rating scores than non-severe patients (P<0.001). The AI-CT score was more predictive of the severity of COVID-19 (AUC=0.929), and ground-glass opacity (GGO) was more predictive of further intubation and mechanical ventilation (AUC=0.836). Furthermore, the CT semiquantitative score was linearly associated with the AI-CT rating system (Adj R2=75.5%, P<0.001).

Conclusion

AI technology could be used to evaluate disease severity in COVID-19 patients. Although it could not be considered an independent factor, there was no doubt that GGOs displayed more predictive value for further mechanical ventilation.
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_1
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_2
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_3
Artificial intelligence CT helps evaluate the severity of COVID-19 patients: A retrospective study_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome                                Risk assessment of fault water inrush during deep mining
    About
    |
    Contact
    |
    Copyright © PubCard