Year
Month
(Peer-Reviewed) Efficient stochastic parallel gradient descent training for on-chip optical processor
Yuanjian Wan 万远剑 ¹ ², Xudong Liu 刘旭东 ¹ ², Guangze Wu 吴广泽 ¹ ², Min Yang 杨敏 ¹ ², Guofeng Yan 颜国锋 ¹ ², Yu Zhang 张宇 ¹ ², Jian Wang 王健 ¹ ²
¹ Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家研究中心
² Optics Valley Laboratory, Wuhan 430074, China
中国 武汉 湖北光谷实验室
Opto-Electronic Advances, 2024-04-25
Abstract

In recent years, space-division multiplexing (SDM) technology, which involves transmitting data information on multiple parallel channels for efficient capacity scaling, has been widely used in fiber and free-space optical communication systems. To enable flexible data management and cope with the mixing between different channels, the integrated reconfigurable optical processor is used for optical switching and mitigating the channel crosstalk.

However, efficient online training becomes intricate and challenging, particularly when dealing with a significant number of channels. Here we use the stochastic parallel gradient descent (SPGD) algorithm to configure the integrated optical processor, which has less computation than the traditional gradient descent (GD) algorithm. We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.

Moreover, we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems. In comparison with the traditional GD algorithm, it is found that the SPGD algorithm features better performance especially when the scale of matrix is large, which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
Efficient stochastic parallel gradient descent training for on-chip optical processor_1
Efficient stochastic parallel gradient descent training for on-chip optical processor_2
Efficient stochastic parallel gradient descent training for on-chip optical processor_3
Efficient stochastic parallel gradient descent training for on-chip optical processor_4
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06



  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters                                High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
    About
    |
    Contact
    |
    Copyright © PubCard