(Peer-Reviewed) Three-dimensional multichannel waveguide grating filters
Si-Yu Yin 尹思宇, Qi Guo 国旗, Shan-Ren Liu 刘善仁, Ju-Wei He 贺炬为, Yong-Sen Yu 于永森, Zhen-Nan Tian 田振男, Qi-Dai Chen 陈岐岱
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
中国 长春 吉林大学电子科学与工程学院 集成光电子学国家重点实验室
Opto-Electronic Science, 2024-08-14
Abstract
Distributed fiber gratings exhibit outstanding capabilities in achieving a wide spectral response through the superimposition of gratings with different periods in the fiber core. This significantly broadens the design flexibility and potential applications of fiber gratings. However, as photons pass through gratings with varying periods in sequence, which not only inevitably existing signal crosstalk but also poses challenges for integrating.
In this study, a three-dimensional (3D) four-channel filter is proposed and realized in fiber-compatible materials using femtosecond laser writing. The filter consists of a 3D beam splitter and four parallel different-period Bragg waveguide gratings (WGs). By designing grating periods in each path, parallel filtering and reflection at multiple designed wavelengths are achieved compactly with 50 nm spectrum spacing within 1450–1600 nm wavelengths.
The four-channel filter entire measures 15.5 mm × 1 mm × 1 mm (the highest integration of distributed fiber gratings reported so far). Our technique will augment the laser fabrication technology for 3D integrated photonic devices and serve as a powerful and generalized solution for highly integrated in-situ measurement and multi-parameter decoupled sensing.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25