Year
Month
(Peer-Reviewed) Smart reconfigurable metadevices made of shape memory alloy metamaterials
Shiqiang Zhao 赵世强 ¹ ², Yuancheng Fan 樊元成 ¹, Ruisheng Yang 杨蕤生 ¹, Zhehao Ye 叶哲浩 ¹, Fuli Zhang 张富利 ¹, Chen Wang 王陈 ², Weijia Luo 罗伟嘉 ², Yongzheng Wen 文永正 ², Ji Zhou 周济 ²
¹ MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 China
中国 西安 西北工业大学物理科学与技术学院 超常条件材料物理与化学教育部重点实验室
² State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
中国 北京 清华大学材料学院 新型陶瓷与精细工艺国家重点实验室
Opto-Electronic Advances, 2025-01-03
Abstract

Reconfigurable metamaterials significantly expand the application scenarios and operating frequency range of metamaterials, making them promising candidates for use in smart tunable device. Here, we propose and experimentally demonstrate that integrating metamaterial design principles with the intrinsic features of natural materials can engineer thermal smart metadevices.

Tunable extraordinary optical transmission like (EOT-like) phenomena have been achieved in the microwave regime using shape memory alloy (SMA). The strongly localized fields generated by designed metadevices, combined with the intense interference of incident waves, enhance transmission through subwavelength apertures.

Leveraging the temperature-responsive properties of SMA, the morphology of the metadevice can be recontructed, thereby modifying its response to electromagnetic waves. The experiments demonstrated control over the operating frequency and transmission amplitude of EOT-like behavior, achieving a maximum transmission enhancement factor of 126.

Furthermore, the metadevices with modular design enable the realization of multiple functions with independent control have been demonstrated. The proposed SMA-based metamaterials offer advantages in terms of miniaturization, easy processing, and high design flexibility. They may have potential applications in microwave devices requiring temperature control, such as sensing and monitoring.
Smart reconfigurable metadevices made of shape memory alloy metamaterials_1
Smart reconfigurable metadevices made of shape memory alloy metamaterials_2
Smart reconfigurable metadevices made of shape memory alloy metamaterials_3
Smart reconfigurable metadevices made of shape memory alloy metamaterials_4
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25



  • Ferroelectric domain engineering of lithium niobate                                High-frequency enhanced ultrafast compressed active photography
    About
    |
    Contact
    |
    Copyright © PubCard