Year
Month
(Peer-Reviewed) Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge
Haibo Xu 徐海波 ¹, Qingmei Lu 路清梅 ¹ ², Liying Cong ¹, Haowen Tian ¹, Weiqiang Liu 刘卫强 ¹ ², Youhao Liu 刘友好 ² ³, Yunqiao Wang ⁴, Jingwu Chen 陈静武 ² ³, Xiaofei Yi 衣晓飞 ² ³, Ming Yue 岳明 ¹ ²
¹ Key Lab of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
中国 北京 北京工业大学 材料科学与工程学院 新型功能材料教育部重点实验室
² State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China
中国 合肥 稀土永磁材料国家重点实验室
³ Earth–Panda Advanced Magnetic Materials Co., Ltd., Hefei 231500, China
中国 合肥 安徽大地熊新材料股份有限公司
⁴ Beijing Zhong Ke San Huan Research, Beijing 102200, China
中国 北京 中科三环研究院
Abstract

The structural and magnetic properties were studied for recycling Nd–Fe–B powders from Nd–Fe–B sintered magnets sludge via reduction diffusion (RD) with calcium hydride (CaH2) particles. For comparison, traditional reducing agent calcium granules were applied to prepare recycled Nd–Fe–B powders. Finer particle size and better size distribution as well as lower impurity content are achieved by using CaH2 instead of Ca. In detail, the average particle size of the recycled Nd–Fe–B powder is reduced from 4.66 to 3.43 μm, and the bimodal distribution disappears. Moreover, the residual calcium content and oxygen content are reduced to about 0.080 wt% and 0.32 wt%.

As a consequence, the room-temperature magnetization of the CaH2-recycled Nd–Fe–B powder is increased to 146.30 emu/g, 6.8% and 33%, respectively, higher than that of Ca-reduced powder and the initial sludge. Further analysis indicates that CaH2 is able to reduce the sludge at lower temperature to fabricate well-dispersed, uniform recycled powder with high magnetization arising from a combination factors of its low melting point, low thermodynamic behavior, and the release of hydrogen during the reaction.
Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge_1
Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge_2
Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge_3
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Targeted design of advanced electrocatalysts by machine learning                                Bismuth-based materials for rechargeable aqueous batteries and water desalination
    About
    |
    Contact
    |
    Copyright © PubCard