Year
Month
(Peer-Reviewed) Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies
Yang Liu 刘洋 ¹ ², Yinghui Wang 王樱蕙 ¹, Shuyan Song 宋术岩 ¹ ², Hongjie Zhang 张洪杰 ¹ ² ³
¹ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 中国科学院 长春应用化学研究所 稀土资源利用国家重点实验室
² School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China 中国科学技术大学 应用化学与工程学院
³ Department of Chemistry, Tsinghua University, Beijing 100084, China 清华大学 化学系
National Science Review, 2021-08-09
Abstract

The development of reactive oxygen species (ROS) generation agents that can selectively produce sufficient ROS at the tumor site without external energy stimulation is of great significance for the further clinical application of ROS-based therapies.

Herein, we designed a cascade-responsive ROS nanobomb (ZnO₂@Ce6/CaP@CPPO/BSA, designated as Z@Ce6/CaP@CB) with domino effect and without external stimulation for the specific generation of multiple powerful ROS storms at the tumor site. The CaP shell and ZnO₂ core gradually degrade and release Ca²⁺, Zn²⁺, and hydrogen peroxide (H₂O₂) under acid stimulation.

On the one hand, Zn²⁺ can enhance the generation of endogenous superoxide anions (·O₂⁻) and H₂O₂ through the inhibition of the mitochondrial electron transport chain (ETC). On the other hand, the generation of large amounts of exogenous H₂O₂ can cause oxidative damage to tumor cells and further activate bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate (CPPO)-mediated chemiexcited photodynamic therapy.

In addition, the oxidative stress caused by the generated ROS can lead to the uncontrolled accumulation of Ca²⁺ in cells and further result in Ca²⁺ overload-induced cell death. Therefore, the introduction of Z@Ce6/CaP@CB nanobombs triggered the 'domino effect' that caused multiple heavy ROS storms and Ca²⁺ overload in tumors and effectively activated anti-tumor immune response.
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_1
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_2
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_3
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Stabilization of single atom catalysts                                Crowded catalyst, better catalyst
    About
    |
    Contact
    |
    Copyright © PubCard