(Peer-Reviewed) Joint 3D facial shape reconstruction and texture completion from a single image
Xiaoxing Zeng 曾小星 ¹ ², Zhelun Wu ¹, Xiaojiang Peng 彭小江 ¹, Yu Qiao 乔宇 ¹
¹ Shenzhen Institute of Advanced Technology, ChineseAcademy of Sciences, Shenzhen, China
中国 深圳 中国科学院深圳先进技术研究院
² University of Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院大学
Abstract
Recent years have witnessed significant progress in image-based 3D face reconstruction using deep convolutional neural networks. However, current reconstruction methods often perform improperly in self-occluded regions and can lead to inaccurate correspondences between a 2D input image and a 3D face template, hindering use in real applications. To address these problems, we propose a deep shape reconstruction and texture completion network, SRTC-Net, which jointly reconstructs 3D facial geometry and completes texture with correspondences from a single input face image.
In SRTC-Net, we leverage the geometric cues from completed 3D texture to reconstruct detailed structures of 3D shapes. The SRTC-Net pipeline has three stages. The first introduces a correspondence network to identify pixel-wise correspondence between the input 2D image and a 3D template model, and transfers the input 2D image to a U-V texture map. Then we complete the invisible and occluded areas in the U-V texture map using an inpainting network. To get the 3D facial geometries, we predict coarse shape (U-V position maps) from the segmented face from the correspondence network using a shape network, and then refine the 3D coarse shape by regressing the U-V displacement map from the completed U-V texture map in a pixel-to-pixel way.
We examine our methods on 3D reconstruction tasks as well as face frontalization and pose invariant face recognition tasks, using both in-the-lab datasets (MICC, MultiPIE) and in-the-wild datasets (CFP). The qualitative and quantitative results demonstrate the effectiveness of our methods on inferring 3D facial geometry and complete texture; they outperform or are comparable to the state-of-the-art.
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17
Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
Opto-Electronic Advances
2025-07-17
Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
Opto-Electronic Advances
2025-07-09
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27