(Peer-Reviewed) Joint 3D facial shape reconstruction and texture completion from a single image
Xiaoxing Zeng 曾小星 ¹ ², Zhelun Wu ¹, Xiaojiang Peng 彭小江 ¹, Yu Qiao 乔宇 ¹
¹ Shenzhen Institute of Advanced Technology, ChineseAcademy of Sciences, Shenzhen, China
中国 深圳 中国科学院深圳先进技术研究院
² University of Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院大学
Abstract
Recent years have witnessed significant progress in image-based 3D face reconstruction using deep convolutional neural networks. However, current reconstruction methods often perform improperly in self-occluded regions and can lead to inaccurate correspondences between a 2D input image and a 3D face template, hindering use in real applications. To address these problems, we propose a deep shape reconstruction and texture completion network, SRTC-Net, which jointly reconstructs 3D facial geometry and completes texture with correspondences from a single input face image.
In SRTC-Net, we leverage the geometric cues from completed 3D texture to reconstruct detailed structures of 3D shapes. The SRTC-Net pipeline has three stages. The first introduces a correspondence network to identify pixel-wise correspondence between the input 2D image and a 3D template model, and transfers the input 2D image to a U-V texture map. Then we complete the invisible and occluded areas in the U-V texture map using an inpainting network. To get the 3D facial geometries, we predict coarse shape (U-V position maps) from the segmented face from the correspondence network using a shape network, and then refine the 3D coarse shape by regressing the U-V displacement map from the completed U-V texture map in a pixel-to-pixel way.
We examine our methods on 3D reconstruction tasks as well as face frontalization and pose invariant face recognition tasks, using both in-the-lab datasets (MICC, MultiPIE) and in-the-wild datasets (CFP). The qualitative and quantitative results demonstrate the effectiveness of our methods on inferring 3D facial geometry and complete texture; they outperform or are comparable to the state-of-the-art.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28