Year
Month
(Peer-Reviewed) Planar peristrophic multiplexing metasurfaces
Jia Chen 陈佳 ¹ ², Dapeng Wang 王大鹏 ¹ ², Guangyuan Si 司光远 ³, Siew Lang Teo ⁴, Qian Wang ⁴, Jiao Lin ⁵
¹ School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学电子科学与技术学院(国家示范性微电子学院)
² Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
中国 厦门 中国福建能源材料科学与技术创新实验室
³ Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, VIC, Australia
⁴ Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR) 2 Fusionopolis Way, Innovis 08-03, Singapore 138632, Singapore
⁵ School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
Opto-Electronic Advances, 2023-08-31
Abstract

As a promising counterpart of two-dimensional metamaterials, metasurfaces enable to arbitrarily control the wavefront of light at subwavelength scale and hold promise for planar holography and applicable multiplexing devices. Nevertheless, the degrees of freedom (DoF) to orthogonally multiplex data have been almost exhausted.

Compared with state-of-the-art methods that extensively employ the orthogonal basis such as wavelength, polarization or orbital angular momentum, we propose an unprecedented method of peristrophic multiplexing by combining the spatial frequency orthogonality with the subwavelength detour phase principle. The orthogonal relationship between the spatial frequency of incident light and the locally shifted building blocks of metasurfaces can be regarded as an additional DoF. We experimentally demonstrate the viability of the multiplexed holograms.

Moreover, this newly-explored orthogonality is compatible with conventional DoFs. Our findings will contribute to the development of multiplexing metasurfaces and provide a novel solution to nanophotonics, such as large-capacity chip-scale devices and highly integrated communication.
Planar peristrophic multiplexing metasurfaces_1
Planar peristrophic multiplexing metasurfaces_2
Planar peristrophic multiplexing metasurfaces_3
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18



  • Solar cell-based hybrid energy harvesters towards sustainability                                Advancing nonlinear nanophotonics: harnessing membrane metasurfaces for third-harmonic generation and imaging
    About
    |
    Contact
    |
    Copyright © PubCard