Year
Month
(Peer-Reviewed) Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
Xiaotong Li 李小桐 ¹ ², Xiaodong Cai 蔡晓东 ¹, Chang Liu 刘畅 ¹, Yeseul Kim ², Trevon Badloe ³, Huanhuan Liu ⁴, Junsuk Rho 鲁埈锡 ² ⁵ ⁶ ⁷, Shiyi Xiao 肖诗逸 ¹
¹ Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200240, China
中国 上海 上海大学上海先进通信与数据科学研究院 特种光纤与光接入网重点实验室 特种光纤与先进通信国际合作联合实验室
² Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
³ Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
⁴ Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
中国 深圳 中国科学院深圳先进技术研究院
⁵ Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
⁶ Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
⁷ POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
Opto-Electronic Advances, 2024-09-06
Abstract

Scanning focused light with corrected aberrations holds great importance in high-precision optical systems. However, conventional optical systems, relying on additional dynamical correctors to eliminate scanning aberrations, inevitably result in undesired bulkiness and complexity.

In this paper, we propose achieving adaptive aberration corrections coordinated with focus scanning by rotating only two cascaded transmissive metasurfaces. Each metasurface is carefully designed by searching for optimal phase-profile parameters of three coherently worked phase functions, allowing flexible control of both the longitudinal and lateral focal position to scan on any custom-designed curved surfaces. As proof-of-concept, we engineer and fabricate two all-silicon terahertz meta-devices capable of scanning the focal spot with adaptively corrected aberrations.

Experimental results demonstrate that the first one dynamically scans the focal spot on a planar surface, achieving an average scanning aberration of 1.18% within the scanning range of ±30°. Meanwhile, the second meta-device scans two focal points on a planar surface and a conical surface with 2.5% and 4.6% scanning aberrations, respectively. Our work pioneers a breakthrough pathway enabling the development of high-precision yet compact optical devices across various practical domains.
Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning_1
Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning_2
Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning_3
Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Miniature meta-device for dynamic control of Airy beam                                Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
    About
    |
    Contact
    |
    Copyright © PubCard