(Peer-Reviewed) Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications
Yuchan Zhang 张羽婵 ¹, Qilin Jiang 蒋其麟 ¹, Mingquan Long ¹, Ruozhong Han 韩若中 ¹, Kaiqiang Cao 曹凯强 ¹, Shian Zhang 张诗按 ¹, Donghai Feng 冯东海 ¹, Tianqing Jia 贾天卿 ¹ ², Zhenrong Sun 孙真荣 ¹, Jianrong Qiu 邱建荣 ³, Hongxing Xu 徐红星 ¹
¹ State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
中国 上海 华东师范大学物理与材料科学学院 精密光谱科学与技术国家重点实验室
² Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
中国 太原 山西大学 极端光学协同创新中心
³ State Key Laboratory of Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
中国 杭州 浙江大学现代光学仪器国家重点实验室
Opto-Electronic Science, 2022-06-21
Abstract
Over the past two decades, femtosecond laser-induced periodic structures (femtosecond-LIPSs) have become ubiquitous in a variety of materials, including metals, semiconductors, dielectrics, and polymers. Femtosecond-LIPSs have become a useful laser processing method, with broad prospects in adjusting material properties such as structural color, data storage, light absorption, and luminescence.
This review discusses the formation mechanism of LIPSs, specifically the LIPS formation processes based on the pump-probe imaging method. The pulse shaping of a femtosecond laser in terms of the time/frequency, polarization, and spatial distribution is an efficient method for fabricating high-quality LIPSs. Various LIPS applications are also briefly introduced.
The last part of this paper discusses the LIPS formation mechanism, as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
Opto-Electronic Advances
2024-07-05