(Peer-Reviewed) 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate
Zhiqiang Yu 余志强 ¹ ², Nan Zhang 张楠 ¹ ², Jianxin Wang 王建鑫 ¹ ², Zijie Dai 戴子杰 ¹ ², Cheng Gong 龚诚 ¹ ², Lie Lin 林列 ¹ ³, Lanjun Guo 郭兰军 ¹ ², Weiwei Liu 刘伟伟 ¹ ²
¹ Institute of Modern Optics, Nankai University, Tianjin 300350, China
中国 天津 南开大学现代光学研究所
² Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
中国 天津 天津市微尺度光学信息技术科学重点实验室
³ Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
中国 天津 天津市光电传感器与传感网络技术重点实验室
Opto-Electronic Advances, 2022-07-27
Abstract
In this study, an optical setup for generating terahertz (THz) pulses through a two-color femtosecond laser filament was carefully designed to achieve a precise overlap of two-color laser pulses in space and time. β-barium borate (BBO), α-BBO, and a dual-wavelength plate were used to compensate the phase delay of the two-color lasers.
Tilting of α-BBO could further realize the precise spatial overlap of the two beams by counteracting the walk-off effect. The maximum output THz pulse energy reached 21 μJ in argon gas when using a commercial Ti:sapphire laser with a pulse energy of 6 mJ at a 1 kHz repetition rate. The corresponding conversion efficiency exceeded 0.35%.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31