Year
Month
(Peer-Reviewed) Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer
Shishuai Wen ¹ ², Yi Luo ¹ ², Weili Wu 吴伟力 ³, Tingting Zhang 张婷婷 ¹ ², Yichen Yang ¹ ², Qinghai Ji 嵇庆海 ¹ ², Yijun Wu 邬一军 ⁴, Rongliang Shi 史荣亮 ¹ ², Ben Ma 马奔 ¹ ², Midie Xu 许蜜蝶 ⁵, Ning Qu 渠宁 ¹ ²
¹ Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 头颈外科
² Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
中国 上海 复旦大学上海医学院 肿瘤学系
³ Department of Surgical Oncology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
中国 温州 温州医科大学附属第三医院 肿瘤外科
⁴ Department of Thyroid Surgery, Zhejiang University, School of Medicine, The First Affiliated Hospital, Hangzhou 310003, China
中国 杭州 浙江大学医学院附属第一医院 甲状腺外科
⁵ Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 病理科
Abstract

Lipid metabolism plays important roles not only in the structural basis and energy supply of healthy cells but also in the oncogenesis and progression of cancers. In this study, we investigated the prognostic value of lipid metabolism-related genes in papillary thyroid cancer (PTC).

The recurrence predictive gene signature was developed and internally and externally validated based on PTC datasets including The Cancer Genome Atlas (TCGA) and GSE33630 datasets. Univariate, LASSO, and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. The expression profiles of prognostic genes were further determined by immunohistochemistry of tissue microarray using in-house cohorts, which enrolled 97 patients. Kaplan–Meier curve, time-dependent receiver operating characteristic curve, nomogram, and decision curve analyses were used to assess the performance of the gene signature.

We identified four recurrence-related genes, PDZK1IP1, TMC3, LRP2 and KCNJ13, and established a four-gene signature recurrence risk model. The expression profiles of the four genes in the TCGA and in-house cohort indicated that stage T1/T2 PTC and locally advanced PTC exhibit notable associations not only with clinicopathological parameters but also with recurrence. Calibration analysis plots indicate the excellent predictive performance of the prognostic nomogram constructed based on the gene signature.

Single-sample gene set enrichment analysis showed that high-risk cases exhibit changes in several important tumorigenesis-related pathways, such as the intestinal immune network and the p53 and Hedgehog signaling pathways. Our results indicate that lipid metabolism-related gene profiling represents a potential marker for prognosis and treatment decisions for PTC patients.
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_1
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_2
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_3
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_4
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03
  • Smart reconfigurable metadevices made of shape memory alloy metamaterials
  • Shiqiang Zhao, Yuancheng Fan, Ruisheng Yang, Zhehao Ye, Fuli Zhang, Chen Wang, Weijia Luo, Yongzheng Wen, Ji Zhou
  • Opto-Electronic Advances
  • 2025-01-03
  • Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection
  • Xingfeng Li, Jingchi Li, Xiong Ni, Hudi Liu, Qunbi Zhuge, Haoshuo Chen, William Shieh, Yikai Su
  • Opto-Electronic Science
  • 2024-12-24
  • Enhanced amplified spontaneous emission via splitted strong coupling mode in large-area plasmonic cone lattices
  • Jiazhi Yuan, Jiang Hu, Yan Zheng, Hao Wei, Jiamin Xiao, Yi Wang, Xuchao Zhao, Ye Xiang, Yong Lei, Wenxin Wang
  • Opto-Electronic Science
  • 2024-12-19
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16



  • Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures                                Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing
    About
    |
    Contact
    |
    Copyright © PubCard