Year
Month
(Peer-Reviewed) Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer
Shishuai Wen ¹ ², Yi Luo ¹ ², Weili Wu 吴伟力 ³, Tingting Zhang 张婷婷 ¹ ², Yichen Yang ¹ ², Qinghai Ji 嵇庆海 ¹ ², Yijun Wu 邬一军 ⁴, Rongliang Shi 史荣亮 ¹ ², Ben Ma 马奔 ¹ ², Midie Xu 许蜜蝶 ⁵, Ning Qu 渠宁 ¹ ²
¹ Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 头颈外科
² Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
中国 上海 复旦大学上海医学院 肿瘤学系
³ Department of Surgical Oncology, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
中国 温州 温州医科大学附属第三医院 肿瘤外科
⁴ Department of Thyroid Surgery, Zhejiang University, School of Medicine, The First Affiliated Hospital, Hangzhou 310003, China
中国 杭州 浙江大学医学院附属第一医院 甲状腺外科
⁵ Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
中国 上海 复旦大学附属肿瘤医院 病理科
Abstract

Lipid metabolism plays important roles not only in the structural basis and energy supply of healthy cells but also in the oncogenesis and progression of cancers. In this study, we investigated the prognostic value of lipid metabolism-related genes in papillary thyroid cancer (PTC).

The recurrence predictive gene signature was developed and internally and externally validated based on PTC datasets including The Cancer Genome Atlas (TCGA) and GSE33630 datasets. Univariate, LASSO, and multivariate Cox regression analysis were applied to assess prognostic genes and build the prognostic gene signature. The expression profiles of prognostic genes were further determined by immunohistochemistry of tissue microarray using in-house cohorts, which enrolled 97 patients. Kaplan–Meier curve, time-dependent receiver operating characteristic curve, nomogram, and decision curve analyses were used to assess the performance of the gene signature.

We identified four recurrence-related genes, PDZK1IP1, TMC3, LRP2 and KCNJ13, and established a four-gene signature recurrence risk model. The expression profiles of the four genes in the TCGA and in-house cohort indicated that stage T1/T2 PTC and locally advanced PTC exhibit notable associations not only with clinicopathological parameters but also with recurrence. Calibration analysis plots indicate the excellent predictive performance of the prognostic nomogram constructed based on the gene signature.

Single-sample gene set enrichment analysis showed that high-risk cases exhibit changes in several important tumorigenesis-related pathways, such as the intestinal immune network and the p53 and Hedgehog signaling pathways. Our results indicate that lipid metabolism-related gene profiling represents a potential marker for prognosis and treatment decisions for PTC patients.
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_1
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_2
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_3
Identification of lipid metabolism-related genes as prognostic indicators in papillary thyroid cancer_4
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28



  • Hybrid artificial neural networks and analytical model for prediction of optical constants and bandgap energy of 3D nanonetwork silicon structures                                Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing
    About
    |
    Contact
    |
    Copyright © PubCard