Year
Month
(Peer-Reviewed) Lymphangiogenesis contributes to exercise-induced physiological cardiac growth
Yihua Bei 贝毅桦 ¹ ², Zhenzhen Huang ¹ ², Xing Feng ¹ ², Lin Li ¹ ², Meng Wei ¹ ², Yujiao Zhu ¹ ², Shuqin Liu 刘书琴 ¹ ², Chen Chen ¹ ², Mingming Yin ¹ ², Huimin Jiang 姜惠敏 ³, Junjie Xiao 肖俊杰 ¹ ²
¹ Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
上海大学医学院 上海大学附属南通医院(南通市第六人民医院)上海大学老年医学研究院 再生与衰老实验室 南通 中国
² Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
中国 上海 上海大学生命科学学院上海器官修复工程技术研究中心
³ Clinical Laboratory Center, Beijing Hospital of Traditional Chinese Medicine, Beijing, 100010, China
中国 北京 北京中医医院 临床检验中心
Abstract

Background

Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth.

Methods

Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy.

Results

Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1–positive lymphatic vessels in the heart and upregulated lymphatic vessel endothelial hyaluronic acid receptor 1 and Podoplanin expressions. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated lymphatic vessel endothelial hyaluronic acid receptor 1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B activation, as well as reduced CCAAT enhancer-binding protein beta and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)–rich-carboxylterminal domain 4, contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation.

Conclusion

Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through protein kinase B activation and the CCAAT enhancer-binding protein beta–rich-carboxylterminal domain 4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.
Lymphangiogenesis contributes to exercise-induced physiological cardiac growth_1
Lymphangiogenesis contributes to exercise-induced physiological cardiac growth_2
Lymphangiogenesis contributes to exercise-induced physiological cardiac growth_3
Lymphangiogenesis contributes to exercise-induced physiological cardiac growth_4
Lymphangiogenesis contributes to exercise-induced physiological cardiac growth_5
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability                                Benchmarking deep learning-based models on nanophotonic inverse design problems
    About
    |
    Contact
    |
    Copyright © PubCard