Year
Month
(Peer-Reviewed) All-optical logic gate computing for high-speed parallel information processing
Shuming Jiao 焦述铭 ¹, Junwei Liu 刘军伟 ², Liwen Zhang 张力文 ¹, Feihong Yu 余飞宏 ³, Guomeng Zuo 左国猛 ¹ ³, Jingming Zhang ³, Fang Zhao 赵方 ³, Weihao Lin 林伟浩 ³, Liyang Shao 邵理阳 ¹ ³
¹ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
² Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China
中国 香港 香港科技大学物理系
³ Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
中国 深圳 南方科技大学电子与电气工程系
Opto-Electronic Science, 2022-09-07
Abstract

Optical computing and optical neural network have gained increasing attention in recent years because of their potential advantages of parallel processing at the speed of light and low power consumption by comparison with electronic computing. The optical implementation of the fundamental building blocks of a digital computer, i.e. logic gates, has been investigated extensively in the past few decades.

Optical logic gate computing is an alternative approach to various analogue optical computing architectures. In this paper, the latest development of optical logic gate computing with different kinds of implementations is reviewed. Firstly, the basic concepts of analogue and digital computing with logic gates in the electronic and optical domains are introduced.

And then a comprehensive summary of various optical logic gate schemes including spatial encoding of light field, semiconductor optical amplifiers (SOA), highly nonlinear fiber (HNLF), microscale and nanoscale waveguides, and photonic crystal structures is presented. To conclude, the formidable challenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.
All-optical logic gate computing for high-speed parallel information processing_1
All-optical logic gate computing for high-speed parallel information processing_2
All-optical logic gate computing for high-speed parallel information processing_3
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23
  • An inversely designed integrated spectrometer with reconfigurable performance and ultra-low power consumption
  • Ang Li, Yifan Wu, Chang Wang, Feixia Bao, Zongyin Yang, Shilong Pan
  • Opto-Electronic Advances
  • 2024-07-17
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05



  • 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate                                Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage
    About
    |
    Contact
    |
    Copyright © PubCard