Year
Month
(Peer-Reviewed) Targeted design of advanced electrocatalysts by machine learning
Letian Chen 陈乐添 ¹, Xu Zhang 张旭 ¹ ², An Chen 陈安 ¹, Sai Yao 姚赛 ¹, Xu Hu 胡绪 ¹, Zhen Zhou 周震 ¹ ²
¹ School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
中国 天津 南开大学材料科学与工程学院 新能源材料化学研究所 可再生能源能量转换与存储中心 先进能源材料化学教育部重点实验室
² Engineering Research Center of Advanced Functional Material, Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
中国 河南 郑州 郑州大学化工学院 先进功能材料制造教育部工程研究中心
Abstract

Exploring the production and application of clean energy has always been the core of sustainable development. As a clean and sustainable technology, electrocatalysis has been receiving widespread attention. It is crucial to achieve efficient, stable and cheap electrocatalysts. However, the traditional “trial and error” method is time-consuming, laborious and costly.

In recent years, with the significant increase in computing power, computations have played an important role in electrocatalyst design. Nevertheless, it is still difficult to search for advanced electrocatalysts in the vast chemical space through traditional density functional theory (DFT) computations. Fortunately, the development of machine learning and interdisciplinary integration will inject new impetus into targeted design of electrocatalysts. Machine learning is able to predict electrochemical performances with an accuracy close to DFT.

Here we provide an overview of the application of machine learning in electrocatalyst design, including the prediction of structure, thermodynamic properties and kinetic barriers. We also discuss the potential of explicit solvent model combined with machine learning molecular dynamics in this field. Finally, the favorable circumstances and challenges are outlined for the future development of machine learning in electrocatalysis. The studies on electrochemical processes by machine learning will further realize targeted design of high-efficiency electrocatalysts.
Targeted design of advanced electrocatalysts by machine learning_1
Targeted design of advanced electrocatalysts by machine learning_2
Targeted design of advanced electrocatalysts by machine learning_3
Targeted design of advanced electrocatalysts by machine learning_4
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25



  • Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms                                Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge
    About
    |
    Contact
    |
    Copyright © PubCard