Year
Month
(Peer-Reviewed) Targeted design of advanced electrocatalysts by machine learning
Letian Chen 陈乐添 ¹, Xu Zhang 张旭 ¹ ², An Chen 陈安 ¹, Sai Yao 姚赛 ¹, Xu Hu 胡绪 ¹, Zhen Zhou 周震 ¹ ²
¹ School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
中国 天津 南开大学材料科学与工程学院 新能源材料化学研究所 可再生能源能量转换与存储中心 先进能源材料化学教育部重点实验室
² Engineering Research Center of Advanced Functional Material, Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
中国 河南 郑州 郑州大学化工学院 先进功能材料制造教育部工程研究中心
Abstract

Exploring the production and application of clean energy has always been the core of sustainable development. As a clean and sustainable technology, electrocatalysis has been receiving widespread attention. It is crucial to achieve efficient, stable and cheap electrocatalysts. However, the traditional “trial and error” method is time-consuming, laborious and costly.

In recent years, with the significant increase in computing power, computations have played an important role in electrocatalyst design. Nevertheless, it is still difficult to search for advanced electrocatalysts in the vast chemical space through traditional density functional theory (DFT) computations. Fortunately, the development of machine learning and interdisciplinary integration will inject new impetus into targeted design of electrocatalysts. Machine learning is able to predict electrochemical performances with an accuracy close to DFT.

Here we provide an overview of the application of machine learning in electrocatalyst design, including the prediction of structure, thermodynamic properties and kinetic barriers. We also discuss the potential of explicit solvent model combined with machine learning molecular dynamics in this field. Finally, the favorable circumstances and challenges are outlined for the future development of machine learning in electrocatalysis. The studies on electrochemical processes by machine learning will further realize targeted design of high-efficiency electrocatalysts.
Targeted design of advanced electrocatalysts by machine learning_1
Targeted design of advanced electrocatalysts by machine learning_2
Targeted design of advanced electrocatalysts by machine learning_3
Targeted design of advanced electrocatalysts by machine learning_4
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms                                Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge
    About
    |
    Contact
    |
    Copyright © PubCard