(Peer-Reviewed) Advancing from unimechanism polymerization to multimechanism polymerization: binary polymerization
Ning Ren 任宁, Mengqi Ge, Gangsheng Tong 童刚生, Xinyuan Zhu 朱新远
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
中国 上海 上海交通大学化学化工学院 变革性分子前沿科学中心
Abstract
Polymerizations with multiple mechanisms performed simultaneously are promising but very challenging. As the key limitation, the complicated mutual influence between different mechanisms can be hardly defined and measured. Herein we establish a universal framework for the assessment of mutual influence between different mechanisms using binary polymerization for demonstration. The kinetics and thermodynamics of polymerization with two mechanisms are compared with the corresponding homopolymerization and the difference is expressed by a hybrid function.
The hybrid function is composed of a hybrid parameter that describes the extent of mutual influence and a function that describes necessary conditions for mutual influence to occur. The extent of mutual influence can be calculated using kinetic and thermodynamic data without details of reaction mechanisms, for the first time providing a straightforward method to assess the mutual influence between different polymerization mechanisms. We envision that the method has potential in more complex systems with multiple mechanisms/monomers with mutual influence.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25