Year
Month
(Peer-Reviewed) Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method
Jiangtao Li 李江涛 ¹, Xiaodong Song 宋晓东 ²
¹ Department of Geophysics, School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
中国 武汉 武汉大学测绘学院 地球物理系
² Institute of Theoretical and Applied Geophysics, School of Earth and Space Sciences, Peking University, Beijing 100871, China
中国 北京 北京大学地球与空间科学学院 理论与应用地球物理研究所
Earthquake Science, 2021-09-10
Abstract

The Hi-CLIMB seismic array is located in the central-western Tibetan Plateau. The H-κ-c method (Li JT et al., 2019) was applied to receiver function data on the Hi-CLIMB, which corrects the back-azimuthal variations in the arrival times of Ps and crustal multiples caused by crustal anisotropy and dipping interfaces before performing H-κ stacking.

Compared to the traditional H-κ method, the H-κ stacking results after harmonic corrections showed considerable improvements, including greatly reduced errors, significantly less scattered H (crustal thickness) and κ (crustal vP/vS ratio) values, and clearer patterns of H and κ in different Tibetan blocks. This demonstrates that the H-κ-c method works well even for regions with complex crustal structures, such as the Tibetan Plateau, when there are helpful references from nearby stations or other constraints. The variation in crustal thickness agrees with previous studies but tends to be relatively shallower beneath most of the plateau. Two regions with particularly high crustal vP/vS were observed, namely, one in the northern Himalaya block and beneath the Yarlung-Zangbo suture, and the other in the Qiangtang block.

Their correlation with mid-crust low S velocities from previous studies suggests the possible presence of fluid or partial melt in the two regions, which may have implications for the crustal flow model. In contrast, the Lhasa block had relatively lower crustal vP/vS and relatively higher crustal S velocity within the plateau, which is interpreted to be mechanically stronger than the Himalaya and Qiangtang blocks, and without mid-crust partial melt.
Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method_1
Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method_2
Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method_3
Crustal structure beneath the Hi-CLIMB seismic array in the central-western Tibetan Plateau from the improved H-κ-c method_4
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28



  • Synchronization in PT-symmetric optomechanical resonators                                Three-dimensional fine crustal P-wave velocity structure in the Yangbi and Eryuan earthquake regions, Yunnan, China
    About
    |
    Contact
    |
    Copyright © PubCard