Year
Month
(Preprint) Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine
Yingxin Zhou ¹ ², Jiasheng Zu ¹ ², Jing Liu 刘静 ¹ ² ³
¹ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
中国 北京 中国科学院理化技术研究所
² School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学未来技术学院
³ Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
中国 北京 清华大学医学院生物医学工程系
ChinaXiv, 2021-09-27
Abstract

Magnetism and magnetic monopole are classical issues in physics. Conventional magnets are generally composed of rigid materials which may face challenges in extreme situations. Here, from an alternative other than rigid magnet, we proposed for the first time to generate fluidic endogenous magnetism and construct magnetic monopole through tuning liquid metal machine. Based on theoretical interpretation and conceptual experimental evidences, we illustrated that when gallium base liquid metal in solution rotates under electrical actuation, it forms an endogenous magnetic field inside which well explains the phenomenon that two such discrete metal droplets could easily fuse together, indicating their reciprocal attraction via N and S poles.

Further, we clarified that the self-fueled liquid metal motor also runs as an endogenous fluidic magnet owning electromagnetic homology. When liquid gallium in solution swallowed aluminum inside, it formed a spin motor and dynamically variable charge distribution which produced endogenous magnetism inside. This explains the phenomena that there often happened reflection collision and attraction fusion between running liquid metal motors which were just caused by the dynamic adjustment of their N and S polarities, respectively.

Finally, we conceived that such endogenous magnet could lead to magnetic monopole and four technical routes to realize this object were thus suggested as: 1. Matching interior flow of liquid metal machines; 2. Superposition between external electric effect and magnetic field; 3. Composite construction between magnetic particles and liquid metal motor; 4. Chemical ways such as via galvanic cell reaction. Overall, the present theory and revealed experimental evidences disclosed the role of liquid metal machine as a fluidic endogenous magnet and pointed out some promising ways to realize magnetic monopole. A group of unconventional magnetoelectric devices and applications can be possible in the near future.
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_1
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_2
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_3
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_4
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • First mixopterid eurypterids (Arthropoda: Chelicerata) from the Lower Silurian of South China                                Hepatorenal syndrome in acute-on-chronic liver failure with acute kidney injury: more questions requiring discussion
    About
    |
    Contact
    |
    Copyright © PubCard