Year
Month
(Peer-Reviewed) All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability
Leiming Wu 吴雷明 ¹ ² ⁴, Taojian Fan 范涛健 ¹, Songrui Wei ¹, Yijun Xu ¹, Ye Zhang 张也 ¹, Dingtao Ma 马定涛 ¹ ², Yiqing Shu ², Yuanjiang Xiang 项元江 ¹, Jun Liu 刘军 ¹, Jianqing Li 李建庆 ², Krassimir Panajotov ³, Yuwen Qin 秦玉文 ⁴, Han Zhang 张晗 ¹
¹ Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
中国 深圳 深圳大学微纳光电子学研究院 光电科技协同创新中心 光电子器件与系统教育部/广东省重点实验室 深圳市微纳光子信息技术重点实验室 人工智能与数字经济广东省实验室(深圳)
² Faculty of Information Technology, Macau University of Science and Technology, Macao 519020, China
中国 澳门 澳门科技大学资讯科技学院
³ Department of Applied Physics and Photonics (IR-TONA), Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
⁴ Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
中国 广州 广东工业大学信息工程学院 先进光子技术研究院
Opto-Electronic Advances, 2022-01-25
Abstract

The Kerr nonlinearity in two-dimensional (2D) nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing, modulation, and manipulation abilities. In this contribution, 2D black arsenic-phosphorus (B-AsP) nanosheets (NSs) were applied in nonlinear photonic devices based on spatial self-phase modulation (SSPM) method. By applying the Kerr nonlinearity in 2D B-AsP, an all-optical phase-modulated system is proposed to realize the functions of “on” and “off” in all-optical switching.

By using the same all-optical phase-modulated system, another optical logic gate is proposed, and the logical “or” function is obtained based on the 2D B-AsP NSs dispersions. Moreover, by using the SSPM method, a 2D B-AsP/SnS2 hybrid structure is fabricated, and the result illustrates that the hybrid structure possesses the ability of the unidirectional nonlinear excitation, which helps in obtaining the function of spatial asymmetric light propagation.

This function is considered an important prerequisite for the realization of diode functionalization, which is believed to be a factor in important basis for the design of isolators as well. The initial investigations indicate that 2D B-AsP is applicable for designing optical logical devices, which can be considered as an important development in all-optical information processing.
All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability_1
All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability_2
All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability_3
All-optical logic devices based on black arsenic–phosphorus with strong nonlinear optical response and high stability_4
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Smart photonic wristband for pulse wave monitoring
  • Renfei Kuang, Zhuo Wang, Lin Ma, Heng Wang, Qingming Chen, Arnaldo Leal Junior, Santosh Kumar, Xiaoli Li, Carlos Marques, Rui Min
  • Opto-Electronic Science
  • 2024-08-20



  • Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials                                Lymphangiogenesis contributes to exercise-induced physiological cardiac growth
    About
    |
    Contact
    |
    Copyright © PubCard