(Peer-Reviewed) Cell-free chemoenzymatic starch synthesis from carbon dioxide
Tao Cai 蔡韬 ¹ ², Hongbing Sun 孙红兵 ¹ ², Jing Qiao 乔婧 ¹ ², Leilei Zhu 朱蕾蕾 ² ³, Fan Zhang ¹ ², Jie Zhang 张洁 ² ³, Zijing Tang ² ³, Xinlei Wei 魏欣蕾 ² ³, Jiangang Yang 杨建刚 ² ³, Qianqian Yuan 袁倩倩 ² ⁴, Wangyin Wang 王旺银 ⁵, Xue Yang 杨雪 ² ⁴, Huanyu Chu ² ⁴, Qian Wang ² ⁴, Chun You 游淳 ² ³, Hongwu Ma 马红武 ² ⁴, Yuanxia Sun 孙媛霞 ² ³, Yin Li 李寅 ¹ ², Can Li 李灿 ⁵, Huifeng Jiang 江会锋 ² ⁴, Qinhong Wang 王钦宏 ¹ ² ⁴, Yanhe Ma 马延和 ¹ ² ³
¹ Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
中国 天津 中国科学院天津工业生物技术研究所 战略与综合研究部
² National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
中国 天津 国家合成生物技术创新中心
³ National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
中国 天津 中国科学院天津工业生物技术研究所 工业酶国家工程实验室
⁴ CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
中国 天津 中国科学院天津工业生物技术研究所 中国科学院系统微生物工程重点实验室
⁵ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
中国 大连 中国科学院大连化学物理研究所 催化基础国家重点实验室
Science, 2021-09-24
Abstract
Starches, a storage form of carbohydrates, are a major source of calories in the human diet and a primary feedstock for bioindustry. We report a chemical-biochemical hybrid pathway for starch synthesis from carbon dioxide (CO₂) and hydrogen in a cell-free system. The artificial starch anabolic pathway (ASAP), consisting of 11 core reactions, was drafted by computational pathway design, established through modular assembly and substitution, and optimized by protein engineering of three bottleneck-associated enzymes.
In a chemoenzymatic system with spatial and temporal segregation, ASAP, driven by hydrogen, converts CO₂ to starch at a rate of 22 nanomoles of CO₂ per minute per milligram of total catalyst, an ~8.5-fold higher rate than starch synthesis in maize. This approach opens the way toward future chemo-biohybrid starch synthesis from CO₂.
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
Opto-Electronic Advances
2024-07-05