Year
Month
(Peer-Reviewed) Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
Zhuo Wang 王卓 ¹, Weikang Pan 潘威康 ², Yu He 何羽 ¹, Zhiyan Zhu 朱芷琰 ², Xiangyu Jin 金相宇 ², Muhan Liu 刘沐涵 ², Shaojie Ma 马少杰 ², Qiong He 何琼 ¹ ³, Shulin Sun 孙树林 ² ³ ⁴, Lei Zhou 周磊 ¹ ³
¹ State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
中国 上海 复旦大学应用表面物理国家重点实验室 微纳光子结构教育部重点实验室
² Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
中国 上海 复旦大学 信息科学与工程学院 光科学与工程系 上海超精密光学制造工程技术研究中心
³ Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Shanghai 200433, China
中国 上海 上海市超构表面光场调控重点实验室
⁴ Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City 322000, China
中国 义乌 复旦大学义乌研究院
Opto-Electronic Science, 2025-01-15
Abstract

On-chip devices for generating pre-designed vectorial optical fields (VOFs) under surface wave (SW) excitations are highly desired in integrated photonics. However, conventional devices are usually of large footprints, low efficiencies, and limited wave-control capabilities. Here, we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations, and experimentally verify the concept in terahertz (THz) regime.

We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams, and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with opposite circular polarizations, respectively. We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces, which, under SW excitations, can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.

As a proof of concept, we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excitation at ~0.4 THz. Experimental results agree well with full-wave simulations, collectively verifying the performance of our device. Our study paves the road to realizing highly integrated on-chip functional THz devices, which may find many applications in biological sensing, communications, displays, image multiplexing, and beyond.
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces_1
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces_2
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces_3
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces_4
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25



  • Tailoring temperature response for a multimode fiber                                Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
    About
    |
    Contact
    |
    Copyright © PubCard