Year
Month
(Peer-Reviewed) Continuous subcellular resolution three-dimensional imaging on intact macaque brain
Can Zhou 周灿 ¹, Xiaoquan Yang 杨孝全 ¹ ², Shihao Wu ³, Qiuyuan Zhong 钟秋园 ¹, Ting Luo ¹, Anan Li 李安安 ¹ ² ⁴, Guangcai Liu ¹, Qingtao Sun 孙庆涛 ², Pan Luo 罗盘 ¹, Lei Deng 邓磊 ¹, Hong Ni 倪鸿 ¹, Chaozhen Tan ¹, Jing Yuan 袁菁 ¹ ², Qingming Luo 骆清铭 ⁵, Xintian Hu 胡新天 ³ ⁴, Xiangning Li 李向宁 ¹ ², Hui Gong 龚辉 ¹ ² ⁴
¹ Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China 华中科技大学 机械科学与工程学院 生物医学光子学教育部重点实验室 武汉光电国家实验室 Britton Chance 生物医学光子学研究中心
² HUST-Suzhou Institute for Brainsmatics, Suzhou 215123, China 华中科技大学苏州脑空间信息研究院
³ Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China 中国科学院 昆明动物研究所 动物模型与人类疾病机理重点实验室
⁴ CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai 200031, China 中国科学院 脑科学与智能技术卓越创新中心
⁵ School of Biomedical Engineering, Hainan University, Haikou 570228, China 海南大学 生物医学工程学院
Science Bulletin, 2021-08-05
Abstract

To decipher the organizational logic of complex brain circuits, it is important to chart long-distance pathways while preserving micron-level accuracy of local network. However, mapping the neuronal projections with individual-axon resolution in the large and complex primate brain is still challenging.

Herein, we describe a highly efficient pipeline for three-dimensional mapping of the entire macaque brain with subcellular resolution. The pipeline includes a novel poly-N-acryloyl glycinamide (PNAGA)-based embedding method for long-term structure and fluorescence preservation, high-resolution and rapid whole-brain optical imaging, and image post-processing. The cytoarchitectonic information of the entire macaque brain was acquired with a voxel size of 0.32 × 0.32 × 10 μm³, showing its anatomical structure with cell distribution, density, and shape.

Furthermore, thanks to viral labeling, individual long-distance projection axons from the frontal cortex were for the first time reconstructed across the entire brain hemisphere with a voxel size of 0.65 × 0.65 × 3 μm³. Our results show that individual cortical axons originating from the prefrontal cortex simultaneously target multiple brain regions, including the visual cortex, striatum, thalamus, and midbrain. This pipeline provides an efficient method for cellular and circuitry investigation of the whole macaque brain with individual-axon resolution, and can shed light on brain function and disorders.
Continuous subcellular resolution three-dimensional imaging on intact macaque brain_1
Continuous subcellular resolution three-dimensional imaging on intact macaque brain_2
Continuous subcellular resolution three-dimensional imaging on intact macaque brain_3
Continuous subcellular resolution three-dimensional imaging on intact macaque brain_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • Structural and functional insights into R-loop prevention and mRNA export by budding yeast THO-Sub2 complex                                Water molecules bonded to the carboxylate groups at the inorganic-organic interface of an inorganic nanocrystal coated with alkanoate ligands
    About
    |
    Contact
    |
    Copyright © PubCard