Year
Month
(Conference Paper) Blind Estimation of Sparse Simo Channels: Quadratic Vs. Linear Constraints
Mohamed Nait-Meziane ¹, Karim Abed-Meraim ¹, Zhipeng Zhao ²
¹ PRISME Laboratory, University of Orléans, Orléans, France
² Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd., Boulogne-Billancourt, France
2021 IEEE Statistical Signal Processing Workshop (SSP), 2021-08-19
Abstract

Blind multichannel estimation is classically done considering one of two constraints on the channel coefficients: (i) a quadratic constraint (i.e., unit-norm), or (ii) a linear constraint (i.e., fixed value for a particular coefficient). These constraints serve to remove the indeterminacy of the solution inherent to this estimation problem.

In this paper, we investigate the adequacy of both constraints in the particular case of sparse channels. For this purpose, we first conduct a Cramér-Rao Bound (CRB)-based performance comparison, then we support the obtained results with simulation experiments using a subspace method. The obtained results indicate that, contrary to common practice, the linear constraint should be favored over the quadratic constraint for the blind estimation of sparse channels.
Blind Estimation of Sparse Simo Channels: Quadratic Vs. Linear Constraints_1
Blind Estimation of Sparse Simo Channels: Quadratic Vs. Linear Constraints_2
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03



  • GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network                                Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain
    About
    |
    Contact
    |
    Copyright © PubCard