(Conference Paper) Blind Estimation of Sparse Simo Channels: Quadratic Vs. Linear Constraints
Mohamed Nait-Meziane ¹, Karim Abed-Meraim ¹, Zhipeng Zhao ²
¹ PRISME Laboratory, University of Orléans, Orléans, France
² Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd., Boulogne-Billancourt, France
2021 IEEE Statistical Signal Processing Workshop (SSP), 2021-08-19
Abstract
Blind multichannel estimation is classically done considering one of two constraints on the channel coefficients: (i) a quadratic constraint (i.e., unit-norm), or (ii) a linear constraint (i.e., fixed value for a particular coefficient). These constraints serve to remove the indeterminacy of the solution inherent to this estimation problem.
In this paper, we investigate the adequacy of both constraints in the particular case of sparse channels. For this purpose, we first conduct a Cramér-Rao Bound (CRB)-based performance comparison, then we support the obtained results with simulation experiments using a subspace method. The obtained results indicate that, contrary to common practice, the linear constraint should be favored over the quadratic constraint for the blind estimation of sparse channels.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31