(Conference Paper) Blind Estimation of Sparse Simo Channels: Quadratic Vs. Linear Constraints
Mohamed Nait-Meziane ¹, Karim Abed-Meraim ¹, Zhipeng Zhao ²
¹ PRISME Laboratory, University of Orléans, Orléans, France
² Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd., Boulogne-Billancourt, France
2021 IEEE Statistical Signal Processing Workshop (SSP), 2021-08-19
Abstract
Blind multichannel estimation is classically done considering one of two constraints on the channel coefficients: (i) a quadratic constraint (i.e., unit-norm), or (ii) a linear constraint (i.e., fixed value for a particular coefficient). These constraints serve to remove the indeterminacy of the solution inherent to this estimation problem.
In this paper, we investigate the adequacy of both constraints in the particular case of sparse channels. For this purpose, we first conduct a Cramér-Rao Bound (CRB)-based performance comparison, then we support the obtained results with simulation experiments using a subspace method. The obtained results indicate that, contrary to common practice, the linear constraint should be favored over the quadratic constraint for the blind estimation of sparse channels.
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17