(Peer-Reviewed) Terahertz generation from laser-induced plasma
Wenfeng Sun 孙文峰 ¹ ², Xinke Wang 王新柯 ¹ ², Yan Zhang 张岩 ¹ ²
¹ Department of Physics, Capital Normal University, Beijing 100048, China
中国 北京 首都师范大学物理系
² Beijing Key Lab of Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
中国 北京 超材料与器件北京市重点实验室 太赫兹光电子学教育部重点实验室
Opto-Electronic Science, 2022-08-04
Abstract
Interest of the research in terahertz (THz) wave has been strongly motivated by its wide applications in the fields of physics, chemistry, biology, and engineering. Developing efficient and reliable THz source is of uttermost priority in these researches. Numerous attempts have been made in fulfilling the THz generation. Greatly benefited from the progress of the ultrafast pulses, the laser-induced-plasma is one of the auspicious tools to provide desirable THz waves, owing to its superiorities in high power threshold, intense THz signal, and ultrawide THz spectrum.
This paper reviews the physics and progress of the THz generation from the laser-induced plasmas, which are produced by gas, liquid, and solid. The characteristics of the emitted THz waves are also included. There are many complicated physical processes involved in the interactions of laser-plasma, making various laser-plasma scenarios in the THz generations.
In view of this, we will only focus on the THz generation classified by physical mechanisms. Finally, we discuss a perspective on the future of THz generation from the laser-induced plasma, as well as its involved challenges.
Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
Opto-Electronic Advances
2024-07-05