(Peer-Reviewed) Disordered Translocation is Hastening Local Extinction of the Chinese Giant Salamander
Guocheng SHU ¹ ², Ping LIU ¹ ³, Tian ZHAO ¹, Cheng LI 李成 ¹ ³, Yinmeng HOU ¹ ⁴, Chunlin ZHAO ¹ ⁴, Jie WANG ¹, Xiaoxiao SHU ¹ ⁴, Jiang CHANG ⁵, Jianping JIANG 江建平 ¹ ³, Feng XIE 谢锋 ¹ ³
¹ CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
中国 四川 成都 中国科学院山地生态恢复与生物资源利用重点实验室 中国科学院成都生物研究所
² Yibin University, Yibin 644000, Sichuan, China
中国 四川 宜宾 宜宾学院
³ University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学
⁴ Sichuan University, Chengdu 610065, Sichuan, China
中国 四川 成都 四川大学
⁵ State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
中国 北京 中国环境科学研究院环境基准与风险评估国家重点实验室
Asian Herpetological Research, 2021-09-25
Abstract
Biodiversity is declining globally by an unprecedented extinction rate. This is especially true for amphibians, accounting for 24.3% of all threatened vertebrates. As the largest extant amphibian species in the world, wild populations of the Chinese giant salamander (Genus Andrias) (CGS) have decreased dramatically because of overexploitation and habitat degradation. Translocation has become an important strategy for restoring threatened wild populations worldwide.
However, disordered translocation usually has negative effects on the native populations. We provide an overview of CGS translocation and show that disordered translocation can increase local population extinction. Nearly four times the estimated number of wild individuals have been released across China. There are three types of translocation used for CGS, namely, reinforcement, reintroduction and ecological replacement, the last of which accounts for over one-third of translocations. Our genetic screening revealed that most released individuals were not from local populations, with one to four lineages detected in every release site (n = 6).
This disordered translocation can potentially reduce the genetic integrity of original populations. Hence, we suggest suspending current CGS translocation activities immediately, until more robust measures can be developed and implemented to improve the current translocation program, especially with respect to lineage identification and the identification of appropriate release sites.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28