Year
Month
(Peer-Reviewed) Deep learning assisted variational Hilbert quantitative phase imaging
Zhuoshi Li 李卓识 ¹ ² ³, Jiasong Sun 孙佳嵩 ¹ ² ³, Yao Fan 范瑶 ¹ ² ³, Yanbo Jin 金彦伯 ¹ ² ³, Qian Shen 沈茜 ¹ ² ³, Maciej Trusiak ⁴, Maria Cywińska ⁴, Peng Gao 郜鹏 ⁵, Qian Chen 陈钱 ³, Chao Zuo 左超 ¹ ² ³
¹ Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
中国 南京 南京理工大学智能计算成像实验室
² Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210094, China
中国 南京 南京理工大学智能计算成像研究院
³ Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing 210094, China
中国 南京 江苏省光谱成像与智能感知重点实验室
⁴ Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw 02-525, Poland
⁵ School of Physics, Xidian University, Xi'an 710126, China
中国 西安 西安电子科技大学物理学院
Opto-Electronic Science, 2023-05-18
Abstract

We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively low-carrier frequency holograms—deep learning assisted variational Hilbert quantitative phase imaging (DL-VHQPI). The method, incorporating a conventional deep neural network into a complete physical model utilizing the idea of residual compensation, reliably and robustly recovers the quantitative phase information of the test objects.

It can significantly alleviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system. Compared to the conventional end-to-end networks (without a physical model), the proposed method can reduce the dataset size dramatically while maintaining the imaging quality and model generalization.

The DL-VHQPI is quantitatively studied by numerical simulation. The live-cell experiment is designed to demonstrate the method's practicality in biological research. The proposed idea of the deep learning-assisted physical model might be extended to diverse computational imaging techniques.
Deep learning assisted variational Hilbert quantitative phase imaging_1
Deep learning assisted variational Hilbert quantitative phase imaging_2
Deep learning assisted variational Hilbert quantitative phase imaging_3
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28



  • Hybrid bound states in the continuum in terahertz metasurfaces                                Top-down control of bottom-up material synthesis @ nanoscale
    About
    |
    Contact
    |
    Copyright © PubCard