Year
Month
(Peer-Reviewed) Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
Shasha Li 李莎莎 ¹, Yini Fang 方旖旎 ², Jianfang Wang 王建方 ²
¹ School of Integrated Circuits, Sun Yat-sen University, Shenzhen 518107, China
中国 深圳 中山大学集成电路学院
² Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
中国 香港 香港中文大学物理系
Opto-Electronic Science, 2024-06-28
Abstract

Light–matter interactions in two-dimensional (2D) materials have been the focus of research since the discovery of graphene. The light–matter interaction length in 2D materials is, however, much shorter than that in bulk materials owing to the atomic nature of 2D materials. Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions, offering great opportunities for both fundamental research and technological applications.

Nanoparticle-on-mirror (NPoM) structures with extremely confined optical fields are highly desired in this aspect. In addition, 2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom. A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction. In this review, we will first introduce the basic concepts of plasmonic modes in NPoM structures. Interactions between plasmons and quasi-particles in 2D materials, e.g., excitons and phonons, from weak to strong coupling and potential applications will then be described in detail.

Related phenomena in subnanometer metallic gaps separated by 2D materials, such as quantum tunneling, will also be touched. We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research. We believe that the hybrid systems of 2D materials and NPoM structures will be a promising research field in the future.
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures_1
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures_2
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures_3
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures_4
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode                                NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
    About
    |
    Contact
    |
    Copyright © PubCard