Year
Month
(Peer-Reviewed) Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves
Zegao Yin 尹则高 ¹ ², Zihan Zheng 郑子涵 ¹, Ning Yu 于宁 ¹, Haojian Wang ¹
¹ Engineering College, Ocean University of China, Qingdao, 266100, China
中国 青岛 中国海洋大学工程学院
² Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao, 266100, China
中国 青岛 中国海洋大学山东省海洋工程重点实验室
Abstract

Traditional breakwater takes the advantage of high protection performance and has been widely used. However, it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor. Consequently, a partially permeable stepped breakwater (PPSB) is proposed to ensure safety and good water exchange capacity for an inside harbor, and a 3-D computational fluid dynamics (CFD) mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations, Re-Normalization Group (RNG) k-ε equations, and the VOF technique.

A series of experiments are conducted to measure the wave heights for validating the mathematical model, and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients, respectively. With the increase in the reciprocal value of PPSB slope, incident wave steepness and permeable ratio below still water level (SWL), the wave reflection coefficient decreases. The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness; however, it increases with the increase in the permeable ratio below SWL.

With increases in the reciprocal value of the PPSB slope, permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios, the wave energy dissipation coefficient increases; however, it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios. Furthermore, simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data.
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves_1
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves_2
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves_3
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28



  • Identification of Antarctic minke and killer whales with passive acoustic monitoring in Prydz Bay, Antarctica                                Flexible rotation of transverse optical field for 2D self-accelerating beams with a designated trajectory
    About
    |
    Contact
    |
    Copyright © PubCard