(Preprint) Data Pricing in Machine Learning Pipelines
Zicun Cong ¹, Xuan Luo ¹, Pei Jian 裴健 ¹, Feida Zhu 朱飞达 ², Yong Zhang ³
¹ Simon Fraser University, Burnaby, Canada
² Singapore Management University, Singapore
³ Huawei Technologies Canada, Burnaby, Canada
arXiv, 2021-08-18
Abstract
Machine learning is disruptive. At the same time, machine learning can only succeed by collaboration among many parties in multiple steps naturally as pipelines in an eco-system, such as collecting data for possible machine learning applications, collaboratively training models by multiple parties and delivering machine learning services to end users. Data is critical and penetrating in the whole machine learning pipelines.
As machine learning pipelines involve many parties and, in order to be successful, have to form a constructive and dynamic eco-system, marketplaces and data pricing are fundamental in connecting and facilitating those many parties. In this article, we survey the principles and the latest research development of data pricing in machine learning pipelines. We start with a brief review of data marketplaces and pricing desiderata. Then, we focus on pricing in three important steps in machine learning pipelines.
To understand pricing in the step of training data collection, we review pricing raw data sets and data labels. We also investigate pricing in the step of collaborative training of machine learning models, and overview pricing machine learning models for end users in the step of machine learning deployment. We also discuss a series of possible future directions.
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17