(Peer-Reviewed) Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber
Shoulin Jiang 姜寿林 ¹, Feifan Chen 陈非凡 ¹ ², Yan Zhao 赵焱 ¹ ², Shoufei Gao 高寿飞 ³, Yingying Wang 汪滢莹 ³, Hoi Lut Ho 何海律 ¹ ², Wei Jin 靳伟 ¹ ²
¹ Photonics Research Center, the Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
中国 深圳 香港理工大学深圳研究院 光子学研究中心
² Department of Electrical Engineering and Photonics Research Institute, the Hong Kong Polytechnic University, Hong Kong 999077, China
中国 香港 香港理工大学 电机工程学系 光子技术研究院
³ Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
中国 广州 暨南大学 光子技术研究院
Opto-Electronic Advances, 2022-11-04
Abstract
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber. The phase modulation dynamics are studied by multi-physics simulation.
A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling. It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm. The rise and fall time constants are 3.5 and 3.7 μs, respectively, 2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.
The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31