(Peer-Reviewed) Configurable topological beam splitting via antichiral gyromagnetic photonic crystal
Jianfeng Chen 陈剑锋 ¹, Zhi-Yuan Li 李志远 ¹ ²
¹ School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
中国 广州 华南理工大学物理与光电学院
² State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
中国 广州 华南理工大学发光材料与器件国家重点实验室
Opto-Electronic Science, 2022-05-20
Abstract
Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC.
The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC.
When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20