(Peer-Reviewed) Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens
Long Chen 陈龙 ¹ ², Kaiqiang Cao 曹凯强 ¹, Yanli Li 李艳丽 ¹, Jukun Liu 刘聚坤 ¹, Shian Zhang 张诗按 ¹, Donghai Feng 冯东海 ¹, Zhenrong Sun 孙真荣 ¹, Tianqing Jia 贾天卿 ¹ ²
¹ State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
中国 上海 华东师范大学物理与电子科学学院 精密光谱科学与技术国家重点实验室
² Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
中国 太原 山西省极端光学协同创新中心
Opto-Electronic Advances, 2021-12-25
Abstract
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures (LIPSSs), especially on glass surfaces. In this study, two-beam interference (TBI) of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses. Compared with those produced using a single circular or cylindrical lens, the LIPSSs produced by TBI are much straighter and more regular.
Depending on the laser fluence and scanning velocity, LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica surface. Their structural colors are blue, green, and red, and only green and red, respectively. Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors, indicating potential applications in surface coloring and anti-counterfeiting logos.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31