(Peer-Reviewed) Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture
Yilin Wang 王艺霖 ¹, Qingbin Fan 范庆斌 ¹, Ting Xu 徐挺 ¹ ²
¹ National Laboratory of Solid-State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
中国 南京 南京大学 现代工程与应用科学学院 固体微结构物理国家重点实验室 智能光传感与调控技术教育部重点实验室
² Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
中国 南京 南京大学人工微结构科学与技术协同创新中心
Opto-Electronic Advances, 2021-01-27
Abstract
Achromatic metalens composed of arrays of subwavelength nanostructures with spatially varying geometries is attractive for a number of optical applications. However, the limited degree of freedom in the single layer achromatic metasurface design makes it difficult to simultaneously guarantee the sufficient phase dispersion and high diffraction efficiency, which restricts the achromatic bandwidth and efficiency of metalens.
Here we propose and demonstrate a high efficiency achromatic metalens with diffraction-limited focusing capability at the wavelength ranging from 1000 nm to 1700 nm. The metalens comprises two stacked nanopillar metasurfaces, by which the required focusing phase and dispersion compensation can be controlled independently. As a result, in addition to the large achromatic bandwidth, the averaged focusing efficiency of the bilayer metalens is higher than 64% at the near-infrared region.
Our design opens up the possibility to obtain the required phase dispersion and efficiency simultaneously, which is of great significance to design broadband metasurface-based optical devices.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25