(Peer-Reviewed) Adding dimensions with Lucy–Richardson–Rosen algorithm to incoherent imaging
Tatsuki Tahara
National Institute of Information and Communications Technology, 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795, Japan
Opto-Electronic Advances, 2023-05-30
Abstract
A novel computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) for the construction of a single-shot infrared 3D imaging microscope was reported in Opto-Electronic Science. In that study, a commonly available optical element, the Cassegrain objective lens, was used as a coded aperture for 3D imaging using LRRA.
Unlike regular coded aperture imaging systems, achieving 3D imaging using commonly available imaging devices leads to the development of hybrid imaging systems where direct and indirect imaging concepts coexist. The development above will make 3D imaging more commonly used in daily life.
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
Opto-Electronic Science
2024-09-20
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
Opto-Electronic Science
2024-09-03
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
Opto-Electronic Advances
2024-08-28