Year
Month
(Peer-Reviewed) 3D dynamic motion of a dielectric micro-sphere within optical tweezers
Jing Liu 刘静 ¹, Mian Zheng 郑冕 ², Zhengjun Xiong 熊政军 ¹, Zhi-Yuan Li 李志远 ³
¹ Institute of Laser and Intelligent Manufacturing Technology, South-Central University for Nationalities, Wuhan 430074, China
中国 武汉 中南民族大学 激光与智能制造研究院
² China Ship Development and Design Center, Wuhan 430064, China
中国 武汉 中国舰船研究设计中心
³ School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
中国 广州 华南理工大学 物理与光电学院
Opto-Electronic Advances, 2021-01-27
Abstract

Known as laser trapping, optical tweezers, with nanometer accuracy and pico-newton precision, plays a pivotal role in single bio-molecule measurements and controllable motions of micro-machines. In order to advance the flourishing applications for those achievements, it is necessary to make clear the three-dimensional dynamic process of micro-particles stepping into an optical field.

In this paper, we utilize the ray optics method to calculate the optical force and optical torque of a micro-sphere in optical tweezers. With the influence of viscosity force and torque taken into account, we numerically solve and analyze the dynamic process of a dielectric micro-sphere in optical tweezers on the basis of Newton mechanical equations under various conditions of initial positions and velocity vectors of the particle. The particle trajectory over time can demonstrate whether the particle can be successfully trapped into the optical tweezers center and reveal the subtle details of this trapping process. Even in a simple pair of optical tweezers, the dielectric micro-sphere exhibits abundant phases of mechanical motions including acceleration, deceleration, and turning.

These studies will be of great help to understand the particle-laser trap interaction in various situations and promote exciting possibilities for exploring novel ways to control the mechanical dynamics of microscale particles.
3D dynamic motion of a dielectric micro-sphere within optical tweezers_1
3D dynamic motion of a dielectric micro-sphere within optical tweezers_2
3D dynamic motion of a dielectric micro-sphere within optical tweezers_3
3D dynamic motion of a dielectric micro-sphere within optical tweezers_4
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • On the Asymptotic Stability of Wave Equations Coupled by Velocities of Anti-symmetric Type                                Some Questions Regarding Verification of Carleson Measures
    About
    |
    Contact
    |
    Copyright © PubCard