Year
Month
(Peer-Reviewed) Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model
Chong-Ju Hu ¹ ² ³, Da-Li Yu 余大利 ¹, Mei-Sheng He 何梅生 ¹, Hua-Ping Mei 梅华平 ¹, Jie Yu 郁杰 ¹, Tao-Sheng Li 李桃生 ¹
¹ Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
中国 合肥 中国科学院合肥物质科学研究院 核能安全技术研究所
² University of Science and Technology of China, Hefei, 230026, China
中国 合肥 中国科学技术大学
³ Suzhou University, Suzhou, 234000, China
中国 苏州 苏州大学
Abstract

Lithium heat pipes have broad applications in heat pipe cooling reactors and hypersonic vehicles owing to their ultra-high working temperature. In particular, when the length of the lithium heat pipe is ultra-long, the flow and heat transfer characteristics are more complex.

In this study, an improved lumped parameter model that considers the Marangoni effect, bending effect, and different vapor flow patterns and Mach numbers was developed. Thereafter, the proposed model was verified using the University of New Mexico’s Heat Pipe and HTPIPE models. Finally, the verified model was applied to simulate the steady-state operation of an ultra-long lithium heat pipe in a Heat Pipe-Segmented Thermoelectric Module Converters space reactor.

Based on the results:

(1) Vapor thermal resistance was dominant at low heating power and decreased with increasing heating power. The vapor flow inside the heat pipe developed from the laminar to the turbulent phase, whereas the liquid phase in the heat pipe was always laminar.

(2) The vapor pressure drop caused by bending was approximately 22–23% of the total, and the bending effect on the liquid pressure drop could be ignored.

(3) The Marangoni effect reduced the capillary limit by hindering the liquid reflux, especially at low vapor temperatures. Without considering the Marangoni effect, the capillary limit of the lithium heat pipe was overestimated by 9% when the vapor temperature was 1400 K.

(4) The total thermal resistance of the heat pipe significantly increased with increasing adiabatic length when the vapor temperature was low.

Further, the wick dryness increased with increasing adiabatic length at any vapor temperature. Such findings improve on current knowledge for the optimal design and safety analysis of a heat pipe reactor, which adopts ultra-long lithium heat pipes.
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_1
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_2
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_3
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_4
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28
  • An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
  • Weihan Li, Jia Chen, Shizhao Gao, Lingyun Niu, Jiaxuan Wei, Ruosong Sun, Yaqi Wei, Wenxuan Tang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2024-09-25
  • The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
  • Rodrigo Rendeiro, Jan Jargus, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2024-09-20
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18



  • Far-field super-resolution ghost imaging with a deep neural network constraint                                Decoy-State Method for Quantum-Key-Distribution-Based Quantum Private Query
    About
    |
    Contact
    |
    Copyright © PubCard