Year
Month
(Peer-Reviewed) Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model
Chong-Ju Hu ¹ ² ³, Da-Li Yu 余大利 ¹, Mei-Sheng He 何梅生 ¹, Hua-Ping Mei 梅华平 ¹, Jie Yu 郁杰 ¹, Tao-Sheng Li 李桃生 ¹
¹ Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
中国 合肥 中国科学院合肥物质科学研究院 核能安全技术研究所
² University of Science and Technology of China, Hefei, 230026, China
中国 合肥 中国科学技术大学
³ Suzhou University, Suzhou, 234000, China
中国 苏州 苏州大学
Abstract

Lithium heat pipes have broad applications in heat pipe cooling reactors and hypersonic vehicles owing to their ultra-high working temperature. In particular, when the length of the lithium heat pipe is ultra-long, the flow and heat transfer characteristics are more complex.

In this study, an improved lumped parameter model that considers the Marangoni effect, bending effect, and different vapor flow patterns and Mach numbers was developed. Thereafter, the proposed model was verified using the University of New Mexico’s Heat Pipe and HTPIPE models. Finally, the verified model was applied to simulate the steady-state operation of an ultra-long lithium heat pipe in a Heat Pipe-Segmented Thermoelectric Module Converters space reactor.

Based on the results:

(1) Vapor thermal resistance was dominant at low heating power and decreased with increasing heating power. The vapor flow inside the heat pipe developed from the laminar to the turbulent phase, whereas the liquid phase in the heat pipe was always laminar.

(2) The vapor pressure drop caused by bending was approximately 22–23% of the total, and the bending effect on the liquid pressure drop could be ignored.

(3) The Marangoni effect reduced the capillary limit by hindering the liquid reflux, especially at low vapor temperatures. Without considering the Marangoni effect, the capillary limit of the lithium heat pipe was overestimated by 9% when the vapor temperature was 1400 K.

(4) The total thermal resistance of the heat pipe significantly increased with increasing adiabatic length when the vapor temperature was low.

Further, the wick dryness increased with increasing adiabatic length at any vapor temperature. Such findings improve on current knowledge for the optimal design and safety analysis of a heat pipe reactor, which adopts ultra-long lithium heat pipes.
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_1
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_2
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_3
Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model_4
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • Far-field super-resolution ghost imaging with a deep neural network constraint                                Decoy-State Method for Quantum-Key-Distribution-Based Quantum Private Query
    About
    |
    Contact
    |
    Copyright © PubCard