Year
Month
(Peer-Reviewed) AMLR: An Adaptive Multi-level Routing Algorithm for Dragonfly Network
Lijing Zhu ¹, Huaxi Gu 顾华玺 ¹, Xiaoshan Yu 余晓杉 ¹ ², Wenhao Sun ³
¹ State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, China
中国 西安 西安电子科技大学 综合业务网理论及关键技术国家重点实验室
² State Key Laboratory of Mathematical Engineering and Advanced Computing, Wuxi
中国 无锡 无锡数学工程与先进计算国家重点实验室
³ Huawei Technologies Co. Ltd, Nanjing, China
中国 南京 华为技术有限公司
IEEE Communications Letters, 2021-08-17
Abstract

High-radix hierarchical structures, such as the dragonfly, fat-tree, and torus, are cost-effective topologies for high-performance computer (HPC) networks. In these networks, dragonfly outperforms traditional topologies such as fat-tree and torus in cost and scalability. However, network congestion occurs due to the imbalanced traffic pattern, which can lead to degraded performance. The routing algorithm influences the performance of the dragonfly topology in many ways. Routing algorithm can be designed to avoid saturating global or local links, and to avoid deadlock in the network.

In this letter, we introduce an adaptive multi-level routing (AMLR) for dragonfly networks. AMLR has three-level routes. By dividing these routes meticulously, all paths of the network can be used more effectively. Traffic between groups will be more balanced. In particular, we propose a congestion control scheme to cooperate with AMLR in the data transmission process.

Furthermore, congestion detection and notification are leveraged to identify congested packet and inform the network. Evaluations show that the proposed adaptive multi-level routing and congestion control mechanism can relieve the imbalance between groups in the 100-node dragonfly topology. As a result, AMLR provides 26%, 98%, 78%, and 99% lower latencies, and 13%, 87%, 13%, and 128% higher throughputs compared to the shortest routing under uniform, adv+i, hotspot, and permutation traffic, respectively.
AMLR: An Adaptive Multi-level Routing Algorithm for Dragonfly Network_1
AMLR: An Adaptive Multi-level Routing Algorithm for Dragonfly Network_2
AMLR: An Adaptive Multi-level Routing Algorithm for Dragonfly Network_3
  • Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser
  • Qinxue Nie, Yibo Peng, Qiheng Chen, Ningwu Liu, Zhen Wang, Cheng Wang, Wei Ren
  • Opto-Electronic Advances
  • 2024-09-20
  • Genetic algorithm assisted meta-atom design for high-performance metasurface optics
  • Zhenjie Yu, Moxin Li, Zhenyu Xing, Hao Gao, Zeyang Liu, Shiliang Pu, Hui Mao, Hong Cai, Qiang Ma, Wenqi Ren, Jiang Zhu, Cheng Zhang
  • Opto-Electronic Science
  • 2024-09-20
  • Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
  • Zhi Wu, Leimeng Xu, Jindi Wang, Jizhong Song
  • Opto-Electronic Advances
  • 2024-09-18
  • Vortex-field enhancement through high-threshold geometric metasurface
  • Qingsong Wang, Yao Fang, Yu Meng, Han Hao, Xiong Li, Mingbo Pu, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-09-10
  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
  • Xiaotong Li, Xiaodong Cai, Chang Liu, Yeseul Kim, Trevon Badloe, Huanhuan Liu, Junsuk Rho, Shiyi Xiao
  • Opto-Electronic Advances
  • 2024-09-06
  • Functionality multiplexing in high-efficiency metasurfaces based on coherent wave interferences
  • Yuejiao Zhou, Tong Liu, Changhong Dai, Dongyi Wang, Lei Zhou
  • Opto-Electronic Advances
  • 2024-09-03
  • Physics and applications of terahertz metagratings
  • Shreeya Rane, Shriganesh Prabhu, Dibakar Roy Chowdhury
  • Opto-Electronic Science
  • 2024-09-03
  • Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
  • Zhaofeng Gu, Yixiao Gao, Kongsi Zhou, Junyang Ge, Chen Xu, Lei Xu, Mohsen Rahmani, Ran Jiang, Yimin Chen, Zijun Liu, Chenjie Gu, Yaoguang Ma, Jianrong Qiu, Xiang Shen
  • Opto-Electronic Science
  • 2024-09-03
  • Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
  • Jie Li, Xueguang Lu, Hui Li, Chunyu Song, Qi Tan, Yu He, Jingyu Liu, Li Luo, Tingting Tang, Tingting Liu, Hang Xu, Shuyuan Xiao, Wanxia Huang, Yun Shen, Yan Zhang, Yating Zhang, Jianquan Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Smart photonic wristband for pulse wave monitoring
  • Renfei Kuang, Zhuo Wang, Lin Ma, Heng Wang, Qingming Chen, Arnaldo Leal Junior, Santosh Kumar, Xiaoli Li, Carlos Marques, Rui Min
  • Opto-Electronic Science
  • 2024-08-20



  • A Non-Stationary Channel Model with Correlated NLoS/LoS States for ELAA-mMIMO                                Unbiased IoU for Spherical Image Object Detection
    About
    |
    Contact
    |
    Copyright © PubCard