(Peer-Reviewed) A highly sensitive LITES sensor based on a multi-pass cell with dense spot pattern and a novel quartz tuning fork with low frequency
Yahui Liu 刘亚辉 ¹ ², Shunda Qiao 乔顺达 ¹ ², Chao Fang 房超 ¹ ², Ying He 何应 ¹ ², Haiyue Sun 孙海岳 ¹ ², Jian Liu 刘俭 ³, Yufei Ma 马欲飞 ¹ ²
¹ National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150000 China
中国 哈尔滨 哈尔滨工业大学 可调谐(气体)激光技术国家级重点实验室
² Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
中国 郑州 哈尔滨工业大学 郑州研究院
³ Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
中国 哈尔滨 哈尔滨工业大学 仪器科学与工程学院 现代显微仪器研究所
Opto-Electronic Advances, 2024-03-20
Abstract
A highly sensitive light-induced thermoelectric spectroscopy (LITES) sensor based on a multi-pass cell (MPC) with dense spot pattern and a novel quartz tuning fork (QTF) with low resonance frequency is reported in this manuscript. An erbium-doped fiber amplifier (EDFA) was employed to amplify the output optical power so that the signal level was further enhanced.
The optical path length (OPL) and the ratio of optical path length to volume (RLV) of the MPC is 37.7 m and 13.8 cm⁻², respectively. A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor, respectively. The target gas selected to test the performance of the system was acetylene (C₂H₂).
When the optical power was constant at 1000 mW, the minimum detection limit (MDL) of the C₂H₂-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoidal-tip QTF. An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commercial QTF with the trapezoidal-tip QTF.
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17
Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
Opto-Electronic Advances
2025-07-17
Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
Opto-Electronic Advances
2025-07-09
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27