Year
Month
(Peer-Reviewed) The second fusion of laser and aerospace—an inspiration for high energy lasers
Xiaojun Xu 许晓军 ¹ ² ³ ⁴, Rui Wang 王蕊 ¹ ² ³ ⁴, Zining Yang 杨子宁 ¹ ² ³ ⁴
¹ College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学 前沿交叉学科学院
² Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学 量子信息学科交叉中心
³ State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha 410073, China
中国 长沙 国防科技大学 脉冲功率激光技术国家重点实验室
⁴ Nanhu Laser Laboratory, Changsha 410073, China
中国 长沙 南湖之光实验室
Opto-Electronic Advances, 2023-06-25
Abstract

Since the first laser was invented, the pursuit of high-energy lasers (HELs) has always been enthusiastic. The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s, with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers, which finally turned megawatt lasers from dream into reality.

Nowadays, the development of HELs has entered the age of electricity as well as the rocket engines. The properties of current electric rocket engines are highly consistent with HELs' goals, including electrical driving, effective heat dissipation, little medium consumption and extremely light weight and size, which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.

As an exploratory attempt, a new configuration of diode pumped metastable rare gas laser was demonstrated, with the gain generator resembling an electric rocket-engine for improved power scaling ability.
The second fusion of laser and aerospace—an inspiration for high energy lasers_1
The second fusion of laser and aerospace—an inspiration for high energy lasers_2
The second fusion of laser and aerospace—an inspiration for high energy lasers_3
  • High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
  • Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
  • Opto-Electronic Advances
  • 2024-12-16
  • High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
  • Jingbo Yin, Yulong Zhao, Minghui Hong
  • Opto-Electronic Advances
  • 2024-12-16
  • Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
  • Yutao Tang, Zixian Hu, Junhong Deng, Kingfai Li, Guixin Li
  • Opto-Electronic Advances
  • 2024-12-16
  • Design, setup, and facilitation of the speckle structured illumination endoscopic system
  • Elizabeth Abraham, Zhaowei Liu
  • Opto-Electronic Science
  • 2024-12-13
  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
  • Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
  • Opto-Electronic Advances
  • 2024-10-31
  • Advanced biological imaging techniques based on metasurfaces
  • Yongjae Jo, Hyemi Park, Hyeyoung Yoon, Inki Kim
  • Opto-Electronic Advances
  • 2024-10-31
  • Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
  • Shujun Zheng, Jiaren Tan, Hongjie Liu, Xiao Lin, Yusuke Saita, Takanori Nomura, Xiaodi Tan
  • Opto-Electronic Advances
  • 2024-10-23
  • Streamlined photonic reservoir computer with augmented memory capabilities
  • Changdi Zhou, Yu Huang, Yigong Yang, Deyu Cai, Pei Zhou, Kuenyao Lau, Nianqiang Li, Xiaofeng Li
  • Opto-Electronic Advances
  • 2024-10-22
  • High-precision multi-focus laser sculpting of microstructured glass
  • Kang Xu, Peilin Huang, Lingyu Huang, Li Yao, Zongyao Li, Jiantao Chen, Li Zhang, Shaolin Xu
  • Opto-Electronic Advances
  • 2024-10-09
  • Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
  • Sailing He, Ruili Zhang, Junbo Liang
  • Opto-Electronic Advances
  • 2024-09-30
  • Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
  • Shixiong Zhang, Hao Li, Cunzheng Fan, Zhichao Zeng, Chao Xiong, Jie Wu, Zhijun Yan, Deming Liu, Qizhen Sun
  • Opto-Electronic Advances
  • 2024-09-29
  • Data-driven polarimetric approaches fuel computational imaging expansion
  • Sylvain Gigan
  • Opto-Electronic Advances
  • 2024-09-28



  • In-flow holographic tomography boosts lipid droplet quantification                                Hot electron electrochemistry at silver activated by femtosecond laser pulses
    About
    |
    Contact
    |
    Copyright © PubCard